算法信息论中互信息的运算表征

Andrei E. Romashchenko, Marius Zimand
{"title":"算法信息论中互信息的运算表征","authors":"Andrei E. Romashchenko, Marius Zimand","doi":"10.1145/3356867","DOIUrl":null,"url":null,"abstract":"We show that the mutual information, in the sense of Kolmogorov complexity, of any pair of strings x and y is equal, up to logarithmic precision, to the length of the longest shared secret key that two parties—one having x and the complexity profile of the pair and the other one having y and the complexity profile of the pair—can establish via a probabilistic protocol with interaction on a public channel. For ℓ > 2, the longest shared secret that can be established from a tuple of strings (x1, …, xℓ) by ℓ parties—each one having one component of the tuple and the complexity profile of the tuple—is equal, up to logarithmic precision, to the complexity of the tuple minus the minimum communication necessary for distributing the tuple to all parties. We establish the communication complexity of secret key agreement protocols that produce a secret key of maximal length for protocols with public randomness. We also show that if the communication complexity drops below the established threshold, then only very short secret keys can be obtained.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"34 1","pages":"1 - 42"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Operational Characterization of Mutual Information in Algorithmic Information Theory\",\"authors\":\"Andrei E. Romashchenko, Marius Zimand\",\"doi\":\"10.1145/3356867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the mutual information, in the sense of Kolmogorov complexity, of any pair of strings x and y is equal, up to logarithmic precision, to the length of the longest shared secret key that two parties—one having x and the complexity profile of the pair and the other one having y and the complexity profile of the pair—can establish via a probabilistic protocol with interaction on a public channel. For ℓ > 2, the longest shared secret that can be established from a tuple of strings (x1, …, xℓ) by ℓ parties—each one having one component of the tuple and the complexity profile of the tuple—is equal, up to logarithmic precision, to the complexity of the tuple minus the minimum communication necessary for distributing the tuple to all parties. We establish the communication complexity of secret key agreement protocols that produce a secret key of maximal length for protocols with public randomness. We also show that if the communication complexity drops below the established threshold, then only very short secret keys can be obtained.\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":\"34 1\",\"pages\":\"1 - 42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3356867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3356867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们证明了任意一对字符串x和y的互信息,在Kolmogorov复杂度的意义上,在对数精度上等于两方(一方拥有x和这对字符串的复杂度配置文件,另一方拥有y和这对字符串的复杂度配置文件)可以通过在公共通道上交互的概率协议建立的最长共享密钥的长度。对于> 2的情况,由字符串(x1,…,x,)组成的元组中,由一个具有元组的一个组成部分和元组的复杂度曲线的z方建立的最长共享秘密,在对数精度范围内等于元组的复杂度减去将元组分发给所有方所需的最小通信量。对具有公共随机性的协议,建立了产生最大长度密钥的密钥协议的通信复杂度。我们还表明,如果通信复杂度低于设定的阈值,则只能获得非常短的密钥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Operational Characterization of Mutual Information in Algorithmic Information Theory
We show that the mutual information, in the sense of Kolmogorov complexity, of any pair of strings x and y is equal, up to logarithmic precision, to the length of the longest shared secret key that two parties—one having x and the complexity profile of the pair and the other one having y and the complexity profile of the pair—can establish via a probabilistic protocol with interaction on a public channel. For ℓ > 2, the longest shared secret that can be established from a tuple of strings (x1, …, xℓ) by ℓ parties—each one having one component of the tuple and the complexity profile of the tuple—is equal, up to logarithmic precision, to the complexity of the tuple minus the minimum communication necessary for distributing the tuple to all parties. We establish the communication complexity of secret key agreement protocols that produce a secret key of maximal length for protocols with public randomness. We also show that if the communication complexity drops below the established threshold, then only very short secret keys can be obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信