微合金钢在等温条件下精轧机的物理模拟

Stefan Dikic, D. Glišić, Abdunaser Fadel, G. Jovanović, N. Radović
{"title":"微合金钢在等温条件下精轧机的物理模拟","authors":"Stefan Dikic, D. Glišić, Abdunaser Fadel, G. Jovanović, N. Radović","doi":"10.2298/hemind220816018d","DOIUrl":null,"url":null,"abstract":"The aim of this work was to establish a temperature of finish rolling stage of Nb/Ti microalloyed steel containing 0.06 wt.% C, 0.77 wt.% Mn, 0.039 wt.% Nb and 0.015 wt.% Ti, using physical simulation. Samples were subjected to laboratory simulation at a twist plastometer at high temperatures, i.e. between 825 and 950?C. Five pass deformation and interpass times were selected in accordance with a processing parameters at five stand finishing hot strip mill. Restoration (recovery and/or recrystallization) behavior was evaluated by calculation of Fraction Softening (FS) and Area Softening Parameter (ASP) values. At 950?C all individual pass stress-strain curves, FS and ASP show full recrystallization in all interpass intervals. On the other hand, with a decrease in temperature to the interval of 875-825?C, the extent of restoration is decreasing, leading to recovery as a sole softening mechanism at 825?C, which was confirmed by the stress-strain curve shape, and values of FS and ASP. It is assumed that, due to high supersaturation, strain-induced precipitation promoted pinning of grain and subgrain boundaries and suppressed recrystallization. Therefore, the critical temperature for finish rolling was estimated to be 825?C.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Physical simulation of finish rolling of microalloyed steels in isothermal conditions\",\"authors\":\"Stefan Dikic, D. Glišić, Abdunaser Fadel, G. Jovanović, N. Radović\",\"doi\":\"10.2298/hemind220816018d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work was to establish a temperature of finish rolling stage of Nb/Ti microalloyed steel containing 0.06 wt.% C, 0.77 wt.% Mn, 0.039 wt.% Nb and 0.015 wt.% Ti, using physical simulation. Samples were subjected to laboratory simulation at a twist plastometer at high temperatures, i.e. between 825 and 950?C. Five pass deformation and interpass times were selected in accordance with a processing parameters at five stand finishing hot strip mill. Restoration (recovery and/or recrystallization) behavior was evaluated by calculation of Fraction Softening (FS) and Area Softening Parameter (ASP) values. At 950?C all individual pass stress-strain curves, FS and ASP show full recrystallization in all interpass intervals. On the other hand, with a decrease in temperature to the interval of 875-825?C, the extent of restoration is decreasing, leading to recovery as a sole softening mechanism at 825?C, which was confirmed by the stress-strain curve shape, and values of FS and ASP. It is assumed that, due to high supersaturation, strain-induced precipitation promoted pinning of grain and subgrain boundaries and suppressed recrystallization. Therefore, the critical temperature for finish rolling was estimated to be 825?C.\",\"PeriodicalId\":9933,\"journal\":{\"name\":\"Chemical Industry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.2298/hemind220816018d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.2298/hemind220816018d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是利用物理模拟方法确定含0.06 wt.% C、0.77 wt.% Mn、0.039 wt.% Nb和0.015 wt.% Ti的Nb/Ti微合金钢的精轧阶段温度。样品在高温下,即在825至950℃之间,在扭曲塑性计中进行实验室模拟。根据五机架精轧机的工艺参数,选择了五道次变形量和间道次。通过计算分数软化(FS)和面积软化参数(ASP)值来评估恢复(恢复和/或再结晶)行为。在950年?在各道次应力-应变曲线中,FS和ASP在各道次间均表现为完全再结晶。另一方面,随着温度下降到875-825?C,在825℃时,恢复程度逐渐减小,导致恢复成为唯一的软化机制。C,应力-应变曲线形状、FS和ASP值证实了这一点。假设由于高过饱和度,应变诱导析出促进了晶粒和亚晶界的钉住,抑制了再结晶。因此,精轧机的临界温度估计为825℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical simulation of finish rolling of microalloyed steels in isothermal conditions
The aim of this work was to establish a temperature of finish rolling stage of Nb/Ti microalloyed steel containing 0.06 wt.% C, 0.77 wt.% Mn, 0.039 wt.% Nb and 0.015 wt.% Ti, using physical simulation. Samples were subjected to laboratory simulation at a twist plastometer at high temperatures, i.e. between 825 and 950?C. Five pass deformation and interpass times were selected in accordance with a processing parameters at five stand finishing hot strip mill. Restoration (recovery and/or recrystallization) behavior was evaluated by calculation of Fraction Softening (FS) and Area Softening Parameter (ASP) values. At 950?C all individual pass stress-strain curves, FS and ASP show full recrystallization in all interpass intervals. On the other hand, with a decrease in temperature to the interval of 875-825?C, the extent of restoration is decreasing, leading to recovery as a sole softening mechanism at 825?C, which was confirmed by the stress-strain curve shape, and values of FS and ASP. It is assumed that, due to high supersaturation, strain-induced precipitation promoted pinning of grain and subgrain boundaries and suppressed recrystallization. Therefore, the critical temperature for finish rolling was estimated to be 825?C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信