{"title":"生殖和妊娠中的细胞外囊泡","authors":"Tahlia I. Smith, A. Russell","doi":"10.20517/evcna.2022.27","DOIUrl":null,"url":null,"abstract":"Extracellular vesicles (EVs) are small, lipid-bound packages that are secreted by all cell types and have been implicated in many diseases, such as cancer and neurodegenerative disorders. Though limited, an exciting new area of EV research focuses on their role in the reproductive system and pregnancy. In males, EVs have been implicated in sperm production and maturation. In females, EVs play a vital role in maintaining reproductive organ homeostasis and pregnancy, including the regulation of folliculogenesis, ovulation, and embryo implantation. During the development and maintenance of a pregnancy, the placenta is the main form of communication between the mother and the developing fetus. To support the developing fetus, the placenta will act as numerous vital organs until birth, and release EVs into the maternal and fetal bloodstream. EVs play an important role in cell-to-cell communication and may mediate the pathophysiology of pregnancy-related disorders such as preeclampsia, gestational diabetes mellitus, preterm birth, and intrauterine growth restriction, and potentially serve as noninvasive biomarkers for these conditions. In addition, EVs may also mediate processes involved in both male and female infertility. Together, the EVs secreted by both the male and female reproductive tracts work to promote reproductive fertility and play vital roles in mediating maternal-fetal crosstalk and pregnancy maintenance.","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular vesicles in reproduction and pregnancy\",\"authors\":\"Tahlia I. Smith, A. Russell\",\"doi\":\"10.20517/evcna.2022.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracellular vesicles (EVs) are small, lipid-bound packages that are secreted by all cell types and have been implicated in many diseases, such as cancer and neurodegenerative disorders. Though limited, an exciting new area of EV research focuses on their role in the reproductive system and pregnancy. In males, EVs have been implicated in sperm production and maturation. In females, EVs play a vital role in maintaining reproductive organ homeostasis and pregnancy, including the regulation of folliculogenesis, ovulation, and embryo implantation. During the development and maintenance of a pregnancy, the placenta is the main form of communication between the mother and the developing fetus. To support the developing fetus, the placenta will act as numerous vital organs until birth, and release EVs into the maternal and fetal bloodstream. EVs play an important role in cell-to-cell communication and may mediate the pathophysiology of pregnancy-related disorders such as preeclampsia, gestational diabetes mellitus, preterm birth, and intrauterine growth restriction, and potentially serve as noninvasive biomarkers for these conditions. In addition, EVs may also mediate processes involved in both male and female infertility. Together, the EVs secreted by both the male and female reproductive tracts work to promote reproductive fertility and play vital roles in mediating maternal-fetal crosstalk and pregnancy maintenance.\",\"PeriodicalId\":73008,\"journal\":{\"name\":\"Extracellular vesicles and circulating nucleic acids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracellular vesicles and circulating nucleic acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/evcna.2022.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracellular vesicles and circulating nucleic acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/evcna.2022.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracellular vesicles in reproduction and pregnancy
Extracellular vesicles (EVs) are small, lipid-bound packages that are secreted by all cell types and have been implicated in many diseases, such as cancer and neurodegenerative disorders. Though limited, an exciting new area of EV research focuses on their role in the reproductive system and pregnancy. In males, EVs have been implicated in sperm production and maturation. In females, EVs play a vital role in maintaining reproductive organ homeostasis and pregnancy, including the regulation of folliculogenesis, ovulation, and embryo implantation. During the development and maintenance of a pregnancy, the placenta is the main form of communication between the mother and the developing fetus. To support the developing fetus, the placenta will act as numerous vital organs until birth, and release EVs into the maternal and fetal bloodstream. EVs play an important role in cell-to-cell communication and may mediate the pathophysiology of pregnancy-related disorders such as preeclampsia, gestational diabetes mellitus, preterm birth, and intrauterine growth restriction, and potentially serve as noninvasive biomarkers for these conditions. In addition, EVs may also mediate processes involved in both male and female infertility. Together, the EVs secreted by both the male and female reproductive tracts work to promote reproductive fertility and play vital roles in mediating maternal-fetal crosstalk and pregnancy maintenance.