Annalisa Del Vito, I. Osherov, A. Urbanowicz, Y. Katz, Kobi Barkan, I. Turovets, R. Haupt
{"title":"结合基于RCWA模型和TLM算法的光谱反射测量的超大间距和深度结构测量:AM: Advanced metrology","authors":"Annalisa Del Vito, I. Osherov, A. Urbanowicz, Y. Katz, Kobi Barkan, I. Turovets, R. Haupt","doi":"10.1109/ASMC49169.2020.9185276","DOIUrl":null,"url":null,"abstract":"The mainstream of dimensional metrology development is focused towards continuous shrinking of the devices (Moore scaling). Current cutting-edge technologies are in few nanometer range (3-7nm). There is also a growing demand to characterize structures with large dimensions in microns range (pitch, CD or depth). New technology megatrends such as internet of things (IOT) additionally require More than Moore scaling and heterogeneous integration [1–3]. Due to recent developments ultra large pitch scatterometry applications growth is observed in high power, sensors and packaging areas. Here we present novel approach that is focused on ultra large pitch scatterometry and its challenges. We demonstrate how to extend usage of conventional scatterometry for micro size devices.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultra large pitch and depth structures metrology using spectral reflectometry in combination with RCWA based model and TLM Algorithm : AM: Advanced Metrology\",\"authors\":\"Annalisa Del Vito, I. Osherov, A. Urbanowicz, Y. Katz, Kobi Barkan, I. Turovets, R. Haupt\",\"doi\":\"10.1109/ASMC49169.2020.9185276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mainstream of dimensional metrology development is focused towards continuous shrinking of the devices (Moore scaling). Current cutting-edge technologies are in few nanometer range (3-7nm). There is also a growing demand to characterize structures with large dimensions in microns range (pitch, CD or depth). New technology megatrends such as internet of things (IOT) additionally require More than Moore scaling and heterogeneous integration [1–3]. Due to recent developments ultra large pitch scatterometry applications growth is observed in high power, sensors and packaging areas. Here we present novel approach that is focused on ultra large pitch scatterometry and its challenges. We demonstrate how to extend usage of conventional scatterometry for micro size devices.\",\"PeriodicalId\":6771,\"journal\":{\"name\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC49169.2020.9185276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra large pitch and depth structures metrology using spectral reflectometry in combination with RCWA based model and TLM Algorithm : AM: Advanced Metrology
The mainstream of dimensional metrology development is focused towards continuous shrinking of the devices (Moore scaling). Current cutting-edge technologies are in few nanometer range (3-7nm). There is also a growing demand to characterize structures with large dimensions in microns range (pitch, CD or depth). New technology megatrends such as internet of things (IOT) additionally require More than Moore scaling and heterogeneous integration [1–3]. Due to recent developments ultra large pitch scatterometry applications growth is observed in high power, sensors and packaging areas. Here we present novel approach that is focused on ultra large pitch scatterometry and its challenges. We demonstrate how to extend usage of conventional scatterometry for micro size devices.