V. Miniello, L. Diaferio, Carlotta Lass, Ro, E. Verduci
{"title":"健康的重要性","authors":"V. Miniello, L. Diaferio, Carlotta Lass, Ro, E. Verduci","doi":"10.4172/2329-8901.1000162","DOIUrl":null,"url":null,"abstract":"The human gut microbiota plays a very important part in the host’s life, being closely interconnected to its health. Upon birth, a well-balanced bacterial colonization of the infant gut has a profound impact on programming short and long term metabolic and immune homeostasis. Despite the fact that most of the causality is not yet fully understood, shift in the commensal gut microbial communities with implication to disease is often referred to as dysbiosis. Infants who tend to have a delayed and/or aberrant initial colonization with reduced microbial diversity and richness, whether induced by Caesarean section, premature delivery, or excessive use of perinatal antibiotics, could be more at risk for chronic health conditions associated with metabolic and immune disorders. Exploration of the long-term effects of this abnormal microbial number and diversity is critically needed in order to intervene early in the aberrant intestinal composition and restore numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Dietary manipulation of the gut microbiota through the so called ‘gut microbiota biomodulators’ (probiotics, prebiotics, synbiotics and postbiotics) represents a promising preventive avenue. This review aims to highlight factors that influence the gut microbiota soon after birth and discusses the potential gut-driven pathophysiologic pathways involved in intestinal dysbiosis and the gut microbiota-modulating effects of probiotics early in life.","PeriodicalId":16865,"journal":{"name":"Journal of Probiotics & Health","volume":"9 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Importance of Being Eubiotic\",\"authors\":\"V. Miniello, L. Diaferio, Carlotta Lass, Ro, E. Verduci\",\"doi\":\"10.4172/2329-8901.1000162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human gut microbiota plays a very important part in the host’s life, being closely interconnected to its health. Upon birth, a well-balanced bacterial colonization of the infant gut has a profound impact on programming short and long term metabolic and immune homeostasis. Despite the fact that most of the causality is not yet fully understood, shift in the commensal gut microbial communities with implication to disease is often referred to as dysbiosis. Infants who tend to have a delayed and/or aberrant initial colonization with reduced microbial diversity and richness, whether induced by Caesarean section, premature delivery, or excessive use of perinatal antibiotics, could be more at risk for chronic health conditions associated with metabolic and immune disorders. Exploration of the long-term effects of this abnormal microbial number and diversity is critically needed in order to intervene early in the aberrant intestinal composition and restore numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Dietary manipulation of the gut microbiota through the so called ‘gut microbiota biomodulators’ (probiotics, prebiotics, synbiotics and postbiotics) represents a promising preventive avenue. This review aims to highlight factors that influence the gut microbiota soon after birth and discusses the potential gut-driven pathophysiologic pathways involved in intestinal dysbiosis and the gut microbiota-modulating effects of probiotics early in life.\",\"PeriodicalId\":16865,\"journal\":{\"name\":\"Journal of Probiotics & Health\",\"volume\":\"9 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probiotics & Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2329-8901.1000162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probiotics & Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-8901.1000162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The human gut microbiota plays a very important part in the host’s life, being closely interconnected to its health. Upon birth, a well-balanced bacterial colonization of the infant gut has a profound impact on programming short and long term metabolic and immune homeostasis. Despite the fact that most of the causality is not yet fully understood, shift in the commensal gut microbial communities with implication to disease is often referred to as dysbiosis. Infants who tend to have a delayed and/or aberrant initial colonization with reduced microbial diversity and richness, whether induced by Caesarean section, premature delivery, or excessive use of perinatal antibiotics, could be more at risk for chronic health conditions associated with metabolic and immune disorders. Exploration of the long-term effects of this abnormal microbial number and diversity is critically needed in order to intervene early in the aberrant intestinal composition and restore numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Dietary manipulation of the gut microbiota through the so called ‘gut microbiota biomodulators’ (probiotics, prebiotics, synbiotics and postbiotics) represents a promising preventive avenue. This review aims to highlight factors that influence the gut microbiota soon after birth and discusses the potential gut-driven pathophysiologic pathways involved in intestinal dysbiosis and the gut microbiota-modulating effects of probiotics early in life.