{"title":"论置换Van der Corput序列的两族差异","authors":"Florian Pausinger, Alev Topuzoglu","doi":"10.1515/udt-2018-0003","DOIUrl":null,"url":null,"abstract":"Abstract A permuted van der Corput sequence Sbσ $S_b^\\sigma$ in base b is a one-dimensional, infinite sequence of real numbers in the interval [0, 1), generation of which involves a permutation σ of the set {0, 1,..., b − 1}. These sequences are known to have low discrepancy DN, i.e. t(Sbσ):=lim supN→∞DN(Sbσ)/log N $t\\left({S_b^\\sigma } \\right): = {\\rm{lim}}\\,{\\rm{sup}}_{N \\to \\infty } D_N \\left({S_b^\\sigma } \\right)/{\\rm{log}}\\,N$ is finite. Restricting to prime bases p we present two families of generating permutations. We describe their elements as polynomials over finite fields 𝔽p in an explicit way. We use this characterization to obtain bounds for t(Spσ) $t\\left({S_p^\\sigma } \\right)$ for permutations σ in these families. We determine the best permutations in our first family and show that all permutations of the second family improve the distribution behavior of classical van der Corput sequences in the sense that t(Spσ)","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"37 1","pages":"47 - 64"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On the Discrepancy of Two Families of Permuted Van der Corput Sequences\",\"authors\":\"Florian Pausinger, Alev Topuzoglu\",\"doi\":\"10.1515/udt-2018-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A permuted van der Corput sequence Sbσ $S_b^\\\\sigma$ in base b is a one-dimensional, infinite sequence of real numbers in the interval [0, 1), generation of which involves a permutation σ of the set {0, 1,..., b − 1}. These sequences are known to have low discrepancy DN, i.e. t(Sbσ):=lim supN→∞DN(Sbσ)/log N $t\\\\left({S_b^\\\\sigma } \\\\right): = {\\\\rm{lim}}\\\\,{\\\\rm{sup}}_{N \\\\to \\\\infty } D_N \\\\left({S_b^\\\\sigma } \\\\right)/{\\\\rm{log}}\\\\,N$ is finite. Restricting to prime bases p we present two families of generating permutations. We describe their elements as polynomials over finite fields 𝔽p in an explicit way. We use this characterization to obtain bounds for t(Spσ) $t\\\\left({S_p^\\\\sigma } \\\\right)$ for permutations σ in these families. We determine the best permutations in our first family and show that all permutations of the second family improve the distribution behavior of classical van der Corput sequences in the sense that t(Spσ)\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"37 1\",\"pages\":\"47 - 64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/udt-2018-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/udt-2018-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
以b为基底的置换van der Corput序列Sbσ $S_b^\sigma$是区间[0,1)上的一维无限实数序列,其生成涉及集合{0,1,…, b−1}。已知这些序列具有低差异DN,即t(Sbσ):=lim supN→∞DN(Sbσ)/log N $t\left({S_b^\sigma } \right): = {\rm{lim}}\,{\rm{sup}}_{N \to \infty } D_N \left({S_b^\sigma } \right)/{\rm{log}}\,N$是有限的。在素数基p的限制下,我们给出了生成置换的两个族。我们以明确的方式将它们的元素描述为有限域𝔽p上的多项式。我们利用这个表征得到了这些家族中排列σ的t(Spσ) $t\left({S_p^\sigma } \right)$的界。我们确定了第一族的最佳排列,并证明第二族的所有排列在t(Spσ)的意义上改善了经典van der Corput序列的分布行为。
On the Discrepancy of Two Families of Permuted Van der Corput Sequences
Abstract A permuted van der Corput sequence Sbσ $S_b^\sigma$ in base b is a one-dimensional, infinite sequence of real numbers in the interval [0, 1), generation of which involves a permutation σ of the set {0, 1,..., b − 1}. These sequences are known to have low discrepancy DN, i.e. t(Sbσ):=lim supN→∞DN(Sbσ)/log N $t\left({S_b^\sigma } \right): = {\rm{lim}}\,{\rm{sup}}_{N \to \infty } D_N \left({S_b^\sigma } \right)/{\rm{log}}\,N$ is finite. Restricting to prime bases p we present two families of generating permutations. We describe their elements as polynomials over finite fields 𝔽p in an explicit way. We use this characterization to obtain bounds for t(Spσ) $t\left({S_p^\sigma } \right)$ for permutations σ in these families. We determine the best permutations in our first family and show that all permutations of the second family improve the distribution behavior of classical van der Corput sequences in the sense that t(Spσ)