预测实时列车到达时间沿瑞典南部干线

Kahyong Tiong, Zhenliang Ma, C. Palmqvist
{"title":"预测实时列车到达时间沿瑞典南部干线","authors":"Kahyong Tiong, Zhenliang Ma, C. Palmqvist","doi":"10.2495/cr220121","DOIUrl":null,"url":null,"abstract":"Real-time train arrival time prediction is crucial for providing passenger information and timely decision support. The paper develops methods to simultaneously predict train arrival times at downstream stations, including direct multiple output liner regression (DMOLR) and seemingly unrelated regression (SUR) models. To capture correlations of prediction equations, two bias correction terms are tested: (1) one-step prior prediction error and (2) upstream prediction errors. The models are validated on high-speed trains operation data along the Swedish Southern Mainline from 2016 to 2020. The results show that the DMOLR model slightly outperforms the SUR. The DMOLR’s prediction performance improves up to 0.32% and 24.03% in term of RMSE and R 2 respectively when upstream prediction errors are considered.","PeriodicalId":23773,"journal":{"name":"WIT Transactions on the Built Environment","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREDICTION OF REAL-TIME TRAIN ARRIVAL TIMES ALONG THE SWEDISH SOUTHERN MAINLINE\",\"authors\":\"Kahyong Tiong, Zhenliang Ma, C. Palmqvist\",\"doi\":\"10.2495/cr220121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time train arrival time prediction is crucial for providing passenger information and timely decision support. The paper develops methods to simultaneously predict train arrival times at downstream stations, including direct multiple output liner regression (DMOLR) and seemingly unrelated regression (SUR) models. To capture correlations of prediction equations, two bias correction terms are tested: (1) one-step prior prediction error and (2) upstream prediction errors. The models are validated on high-speed trains operation data along the Swedish Southern Mainline from 2016 to 2020. The results show that the DMOLR model slightly outperforms the SUR. The DMOLR’s prediction performance improves up to 0.32% and 24.03% in term of RMSE and R 2 respectively when upstream prediction errors are considered.\",\"PeriodicalId\":23773,\"journal\":{\"name\":\"WIT Transactions on the Built Environment\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIT Transactions on the Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/cr220121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIT Transactions on the Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/cr220121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

列车到达时间的实时预测对于提供乘客信息和及时的决策支持至关重要。本文发展了同时预测下游车站列车到达时间的方法,包括直接多输出线性回归(DMOLR)和看似不相关回归(SUR)模型。为了捕获预测方程的相关性,测试了两个偏差校正项:(1)一步先验预测误差和(2)上游预测误差。这些模型在2016年至2020年瑞典南部干线高速列车运行数据上进行了验证。结果表明,DMOLR模型略优于SUR模型。考虑上游预测误差时,DMOLR的RMSE和r2的预测性能分别提高了0.32%和24.03%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PREDICTION OF REAL-TIME TRAIN ARRIVAL TIMES ALONG THE SWEDISH SOUTHERN MAINLINE
Real-time train arrival time prediction is crucial for providing passenger information and timely decision support. The paper develops methods to simultaneously predict train arrival times at downstream stations, including direct multiple output liner regression (DMOLR) and seemingly unrelated regression (SUR) models. To capture correlations of prediction equations, two bias correction terms are tested: (1) one-step prior prediction error and (2) upstream prediction errors. The models are validated on high-speed trains operation data along the Swedish Southern Mainline from 2016 to 2020. The results show that the DMOLR model slightly outperforms the SUR. The DMOLR’s prediction performance improves up to 0.32% and 24.03% in term of RMSE and R 2 respectively when upstream prediction errors are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信