詹森型几何形状

IF 0.1 Q4 MATHEMATICS
P. Pasteczka
{"title":"詹森型几何形状","authors":"P. Pasteczka","doi":"10.2478/aupcsm-2020-0002","DOIUrl":null,"url":null,"abstract":"\n We present both necessary and sufficient conditions for a convex closed shape such that for every convex function the average integral over the shape does not exceed the average integral over its boundary.\n It is proved that this inequality holds for n-dimensional parallelotopes, n-dimensional balls, and convex polytopes having the inscribed sphere (tangent to all its facets) with the centre in the centre of mass of its boundary.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"7 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Jensen-type geometric shapes\",\"authors\":\"P. Pasteczka\",\"doi\":\"10.2478/aupcsm-2020-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present both necessary and sufficient conditions for a convex closed shape such that for every convex function the average integral over the shape does not exceed the average integral over its boundary.\\n It is proved that this inequality holds for n-dimensional parallelotopes, n-dimensional balls, and convex polytopes having the inscribed sphere (tangent to all its facets) with the centre in the centre of mass of its boundary.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/aupcsm-2020-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们给出了凸闭合形状的充分必要条件,使得对于每一个凸函数,该形状上的平均积分不超过其边界上的平均积分。证明了该不等式适用于n维平行四边形、n维球和具有圆心在其边界质心处的内切球(与其所有面相切)的凸多面体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jensen-type geometric shapes
We present both necessary and sufficient conditions for a convex closed shape such that for every convex function the average integral over the shape does not exceed the average integral over its boundary. It is proved that this inequality holds for n-dimensional parallelotopes, n-dimensional balls, and convex polytopes having the inscribed sphere (tangent to all its facets) with the centre in the centre of mass of its boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信