在Illustris中具有运动上不同核心的星系

I. Ebrov'a, E. Lokas, J. Eli'avsek
{"title":"在Illustris中具有运动上不同核心的星系","authors":"I. Ebrov'a, E. Lokas, J. Eli'avsek","doi":"10.1051/0004-6361/202039562","DOIUrl":null,"url":null,"abstract":"The growing amount of integral-field spectroscopic data creates an increased demand for understanding kinematic peculiarities that carry valuable information about the evolution of the host galaxies. For kinematically distinct cores (KDCs), a number of formation mechanisms have been proposed, but it is still unclear which of them commonly occur in the Universe. We aim to address the KDC formation in the cosmological context. We used the publicly available data of the large-scale hydrodynamic cosmological simulation Illustris. We identify 134 KDCs, study their properties, and follow their evolution back in time. Examples of four galaxies hosting KDCs are presented and described in detail. The masses of the KDC hosts follow the general distribution of the Illustris galaxies, with a possible slight preference towards massive galaxies. KDCs can be long-lived features, with their formation epochs roughly uniformly distributed in look-back times 0-11.4 Gyr, and they can survive even major or multiple subsequent mergers. There is no single channel of KDC formation, but mergers seem to be the formation mechanism for about 60% of KDCs with a significant preference for major mergers and with the percentage being higher among massive hosts. Other KDCs formed during a pericentric passage or flyby of another galaxy, by precession of a previously formed rapidly rotating core, or without an obvious external cause. The mean mass-weighted stellar age inside the KDC radius is either about the same as the look-back time of the KDC formation or older. Although the radii of our KDCs are on average larger than observed, we find that younger stellar ages are typically associated with smaller KDCs. A significant fraction of KDC hosts possess stellar shells formed during mergers that led to KDCs within the last 5 Gyr, or double peaks in their velocity dispersion maps.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Galaxies with kinematically distinct cores in Illustris\",\"authors\":\"I. Ebrov'a, E. Lokas, J. Eli'avsek\",\"doi\":\"10.1051/0004-6361/202039562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing amount of integral-field spectroscopic data creates an increased demand for understanding kinematic peculiarities that carry valuable information about the evolution of the host galaxies. For kinematically distinct cores (KDCs), a number of formation mechanisms have been proposed, but it is still unclear which of them commonly occur in the Universe. We aim to address the KDC formation in the cosmological context. We used the publicly available data of the large-scale hydrodynamic cosmological simulation Illustris. We identify 134 KDCs, study their properties, and follow their evolution back in time. Examples of four galaxies hosting KDCs are presented and described in detail. The masses of the KDC hosts follow the general distribution of the Illustris galaxies, with a possible slight preference towards massive galaxies. KDCs can be long-lived features, with their formation epochs roughly uniformly distributed in look-back times 0-11.4 Gyr, and they can survive even major or multiple subsequent mergers. There is no single channel of KDC formation, but mergers seem to be the formation mechanism for about 60% of KDCs with a significant preference for major mergers and with the percentage being higher among massive hosts. Other KDCs formed during a pericentric passage or flyby of another galaxy, by precession of a previously formed rapidly rotating core, or without an obvious external cause. The mean mass-weighted stellar age inside the KDC radius is either about the same as the look-back time of the KDC formation or older. Although the radii of our KDCs are on average larger than observed, we find that younger stellar ages are typically associated with smaller KDCs. A significant fraction of KDC hosts possess stellar shells formed during mergers that led to KDCs within the last 5 Gyr, or double peaks in their velocity dispersion maps.\",\"PeriodicalId\":8452,\"journal\":{\"name\":\"arXiv: Astrophysics of Galaxies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Astrophysics of Galaxies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202039562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202039562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着积分场光谱数据的不断增长,人们对了解运动特性的需求不断增加,这些特性携带着有关宿主星系演化的宝贵信息。对于运动不同的核心(KDCs),已经提出了许多形成机制,但目前尚不清楚其中哪一种通常发生在宇宙中。我们的目标是在宇宙学背景下解决KDC的形成。我们使用了大规模流体动力学宇宙学模拟Illustris的公开数据。我们确定了134个kdc,研究了它们的特性,并跟踪了它们的演变。给出并详细描述了四个承载kdc的星系的例子。KDC宿主的质量遵循Illustris星系的一般分布,可能稍微偏向于大质量星系。kdc可以是长期存在的特征,它们的形成时期大致均匀地分布在回看时间0-11.4 Gyr,并且它们可以在随后的重大或多次合并中幸存下来。KDC的形成没有单一的渠道,但合并似乎是大约60%的KDC的形成机制,并且明显倾向于大型合并,并且在大质量宿主中比例更高。其他kdc是在另一个星系的近心通道或飞掠期间形成的,是由先前形成的快速旋转核心的进动造成的,或者没有明显的外部原因。KDC半径内的平均质量加权恒星年龄要么与KDC形成时的回溯时间大致相同,要么更老。虽然我们的kdc的半径平均比观测到的要大,但我们发现年轻的恒星年龄通常与较小的kdc相关。相当一部分的KDC宿主拥有在合并期间形成的恒星壳层,这些合并导致KDC在过去的5个Gyr内形成,或者在它们的速度色散图中出现双峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galaxies with kinematically distinct cores in Illustris
The growing amount of integral-field spectroscopic data creates an increased demand for understanding kinematic peculiarities that carry valuable information about the evolution of the host galaxies. For kinematically distinct cores (KDCs), a number of formation mechanisms have been proposed, but it is still unclear which of them commonly occur in the Universe. We aim to address the KDC formation in the cosmological context. We used the publicly available data of the large-scale hydrodynamic cosmological simulation Illustris. We identify 134 KDCs, study their properties, and follow their evolution back in time. Examples of four galaxies hosting KDCs are presented and described in detail. The masses of the KDC hosts follow the general distribution of the Illustris galaxies, with a possible slight preference towards massive galaxies. KDCs can be long-lived features, with their formation epochs roughly uniformly distributed in look-back times 0-11.4 Gyr, and they can survive even major or multiple subsequent mergers. There is no single channel of KDC formation, but mergers seem to be the formation mechanism for about 60% of KDCs with a significant preference for major mergers and with the percentage being higher among massive hosts. Other KDCs formed during a pericentric passage or flyby of another galaxy, by precession of a previously formed rapidly rotating core, or without an obvious external cause. The mean mass-weighted stellar age inside the KDC radius is either about the same as the look-back time of the KDC formation or older. Although the radii of our KDCs are on average larger than observed, we find that younger stellar ages are typically associated with smaller KDCs. A significant fraction of KDC hosts possess stellar shells formed during mergers that led to KDCs within the last 5 Gyr, or double peaks in their velocity dispersion maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信