柔性复合材料的有限变形

S. Luo, T. Chou
{"title":"柔性复合材料的有限变形","authors":"S. Luo, T. Chou","doi":"10.1098/rspa.1990.0074","DOIUrl":null,"url":null,"abstract":"This paper examines the nonlinear elastic behaviour of flexible composites under finite deformation. The constitutive relations have been derived based on a strain-energy density which, in a fourth-order polynomial form, is assumed to be a function of the lagrangian strain components referring to the initial principal material coordinates. The constitutive equations thus obtained are verified by the following experiments: (1) off-axis tension and simple shear for unidirectional composites, and (2) uniaxial tension for flexible composites with wavy fibres. Good agreement has been found between the theory and experiments.","PeriodicalId":20605,"journal":{"name":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1990-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Finite deformation of flexible composites\",\"authors\":\"S. Luo, T. Chou\",\"doi\":\"10.1098/rspa.1990.0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the nonlinear elastic behaviour of flexible composites under finite deformation. The constitutive relations have been derived based on a strain-energy density which, in a fourth-order polynomial form, is assumed to be a function of the lagrangian strain components referring to the initial principal material coordinates. The constitutive equations thus obtained are verified by the following experiments: (1) off-axis tension and simple shear for unidirectional composites, and (2) uniaxial tension for flexible composites with wavy fibres. Good agreement has been found between the theory and experiments.\",\"PeriodicalId\":20605,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.1990.0074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.1990.0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文研究了有限变形下柔性复合材料的非线性弹性行为。本构关系是基于四阶多项式形式的应变能密度推导出来的,假设应变能密度是初始主材料坐标下拉格朗日应变分量的函数。通过以下实验验证了所得的本构方程:(1)单向复合材料的离轴张力和简单剪切,(2)波浪纤维柔性复合材料的单轴张力。理论和实验结果吻合得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite deformation of flexible composites
This paper examines the nonlinear elastic behaviour of flexible composites under finite deformation. The constitutive relations have been derived based on a strain-energy density which, in a fourth-order polynomial form, is assumed to be a function of the lagrangian strain components referring to the initial principal material coordinates. The constitutive equations thus obtained are verified by the following experiments: (1) off-axis tension and simple shear for unidirectional composites, and (2) uniaxial tension for flexible composites with wavy fibres. Good agreement has been found between the theory and experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信