图像恢复中全变分正则化的Kronecker积近似

IF 0.5 Q3 MATHEMATICS
A. Bentbib, A. Bouhamidi, K. Kreit
{"title":"图像恢复中全变分正则化的Kronecker积近似","authors":"A. Bentbib, A. Bouhamidi, K. Kreit","doi":"10.52846/ami.v49i1.1511","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new algorithm to restore blurred and noisy images based on the total variation regularization, where the discrete associated Euler-Lagrange problem is solved by exploiting the structure of the matrices and transforming the initial problem to a generalized Sylvester linear matrix equation by using a special Kronecker product approximation. Afterwards, global Krylov subspace methods are used to solve the linear matrix equation. Numerical experiments are given to illustrate the effectiveness of the proposed method.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kronecker product approximation for the total variation regularization in image restoration\",\"authors\":\"A. Bentbib, A. Bouhamidi, K. Kreit\",\"doi\":\"10.52846/ami.v49i1.1511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new algorithm to restore blurred and noisy images based on the total variation regularization, where the discrete associated Euler-Lagrange problem is solved by exploiting the structure of the matrices and transforming the initial problem to a generalized Sylvester linear matrix equation by using a special Kronecker product approximation. Afterwards, global Krylov subspace methods are used to solve the linear matrix equation. Numerical experiments are given to illustrate the effectiveness of the proposed method.\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v49i1.1511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v49i1.1511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于全变分正则化的模糊噪声图像恢复算法,该算法利用矩阵的结构,利用特殊的Kronecker积近似将离散关联欧拉-拉格朗日问题转化为广义Sylvester线性矩阵方程,从而求解离散关联欧拉-拉格朗日问题。然后,采用全局Krylov子空间方法求解线性矩阵方程。数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kronecker product approximation for the total variation regularization in image restoration
In this paper, we propose a new algorithm to restore blurred and noisy images based on the total variation regularization, where the discrete associated Euler-Lagrange problem is solved by exploiting the structure of the matrices and transforming the initial problem to a generalized Sylvester linear matrix equation by using a special Kronecker product approximation. Afterwards, global Krylov subspace methods are used to solve the linear matrix equation. Numerical experiments are given to illustrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信