Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, S. Malek
{"title":"用整数非线性规划实现多准则测试集最小化","authors":"Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, S. Malek","doi":"10.1145/3180155.3180174","DOIUrl":null,"url":null,"abstract":"Multi-criteria test-suite minimization aims to remove redundant test cases from a test suite based on some criteria such as code coverage, while trying to optimally maintain the capability of the reduced suite based on other criteria such as fault-detection effectiveness. Existing techniques addressing this problem with integer linear programming claim to produce optimal solutions. However, the multi-criteria test-suite minimization problem is inherently nonlinear, due to the fact that test cases are often dependent on each other in terms of test-case criteria. In this paper, we propose a framework that formulates the multi-criteria test-suite minimization problem as an integer nonlinear programming problem. To solve this problem optimally, we programmatically transform this nonlinear problem into a linear one and then solve the problem using modern linear solvers. We have implemented our framework as a tool, called Nemo, that supports a number of modern linear and nonlinear solvers. We have evaluated Nemo with a publicly available dataset and minimization problems involving multiple criteria including statement coverage, fault-revealing capability, and test execution time. The experimental results show that Nemo can be used to efficiently find an optimal solution for multi-criteria test-suite minimization problems with modern solvers, and the optimal solutions outperform the suboptimal ones by up to 164.29% in terms of the criteria considered in the problem.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"15 1","pages":"1039-1049"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Nemo: Multi-criteria Test-Suite Minimization with Integer Nonlinear Programming\",\"authors\":\"Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, S. Malek\",\"doi\":\"10.1145/3180155.3180174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-criteria test-suite minimization aims to remove redundant test cases from a test suite based on some criteria such as code coverage, while trying to optimally maintain the capability of the reduced suite based on other criteria such as fault-detection effectiveness. Existing techniques addressing this problem with integer linear programming claim to produce optimal solutions. However, the multi-criteria test-suite minimization problem is inherently nonlinear, due to the fact that test cases are often dependent on each other in terms of test-case criteria. In this paper, we propose a framework that formulates the multi-criteria test-suite minimization problem as an integer nonlinear programming problem. To solve this problem optimally, we programmatically transform this nonlinear problem into a linear one and then solve the problem using modern linear solvers. We have implemented our framework as a tool, called Nemo, that supports a number of modern linear and nonlinear solvers. We have evaluated Nemo with a publicly available dataset and minimization problems involving multiple criteria including statement coverage, fault-revealing capability, and test execution time. The experimental results show that Nemo can be used to efficiently find an optimal solution for multi-criteria test-suite minimization problems with modern solvers, and the optimal solutions outperform the suboptimal ones by up to 164.29% in terms of the criteria considered in the problem.\",\"PeriodicalId\":6560,\"journal\":{\"name\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"volume\":\"15 1\",\"pages\":\"1039-1049\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3180155.3180174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nemo: Multi-criteria Test-Suite Minimization with Integer Nonlinear Programming
Multi-criteria test-suite minimization aims to remove redundant test cases from a test suite based on some criteria such as code coverage, while trying to optimally maintain the capability of the reduced suite based on other criteria such as fault-detection effectiveness. Existing techniques addressing this problem with integer linear programming claim to produce optimal solutions. However, the multi-criteria test-suite minimization problem is inherently nonlinear, due to the fact that test cases are often dependent on each other in terms of test-case criteria. In this paper, we propose a framework that formulates the multi-criteria test-suite minimization problem as an integer nonlinear programming problem. To solve this problem optimally, we programmatically transform this nonlinear problem into a linear one and then solve the problem using modern linear solvers. We have implemented our framework as a tool, called Nemo, that supports a number of modern linear and nonlinear solvers. We have evaluated Nemo with a publicly available dataset and minimization problems involving multiple criteria including statement coverage, fault-revealing capability, and test execution time. The experimental results show that Nemo can be used to efficiently find an optimal solution for multi-criteria test-suite minimization problems with modern solvers, and the optimal solutions outperform the suboptimal ones by up to 164.29% in terms of the criteria considered in the problem.