T. M. Fawcett, S. Irausquin, Mikhail Simin, H. Valafar
{"title":"基于人工神经网络的扩展力场蛋白质结构识别方法","authors":"T. M. Fawcett, S. Irausquin, Mikhail Simin, H. Valafar","doi":"10.1109/BIBM.2011.53","DOIUrl":null,"url":null,"abstract":"Current protein force fields like the ones seen in CHARMM or Xplor-NIH have many terms that include bonded and non-bonded terms. Yet the force fields do not take into account the use of hydrogen bonds which are important for secondary structure creation and stabilization of proteins. SCOPE is an open-source program that generates proteins from rotamer space. It then creates a force field that uses only non-bonded and hydrogen bond energy terms to create a profile for a given protein. The profiles can then be used in an artificial neural network to create a linear model which is funneled to the true protein conformation.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"15 1","pages":"500-505"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Artificial Neural Network Based Approach for Identification of Native Protein Structures Using an Extended Forcefield\",\"authors\":\"T. M. Fawcett, S. Irausquin, Mikhail Simin, H. Valafar\",\"doi\":\"10.1109/BIBM.2011.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current protein force fields like the ones seen in CHARMM or Xplor-NIH have many terms that include bonded and non-bonded terms. Yet the force fields do not take into account the use of hydrogen bonds which are important for secondary structure creation and stabilization of proteins. SCOPE is an open-source program that generates proteins from rotamer space. It then creates a force field that uses only non-bonded and hydrogen bond energy terms to create a profile for a given protein. The profiles can then be used in an artificial neural network to create a linear model which is funneled to the true protein conformation.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"15 1\",\"pages\":\"500-505\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2011.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Artificial Neural Network Based Approach for Identification of Native Protein Structures Using an Extended Forcefield
Current protein force fields like the ones seen in CHARMM or Xplor-NIH have many terms that include bonded and non-bonded terms. Yet the force fields do not take into account the use of hydrogen bonds which are important for secondary structure creation and stabilization of proteins. SCOPE is an open-source program that generates proteins from rotamer space. It then creates a force field that uses only non-bonded and hydrogen bond energy terms to create a profile for a given protein. The profiles can then be used in an artificial neural network to create a linear model which is funneled to the true protein conformation.