基于数字声音重构的声音生成新方法

IF 1.3 3区 物理与天体物理 Q3 ACOUSTICS
D. Mayrhofer, M. Kaltenbacher
{"title":"基于数字声音重构的声音生成新方法","authors":"D. Mayrhofer, M. Kaltenbacher","doi":"10.1142/s2591728521500213","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the general idea of Digital Sound Reconstruction (DSR) and analyze its inherent limitations. Based on this discussion, a new method which we call Advanced Digital Sound Reconstruction (ADSR) is introduced and analyzed in detail. This method aims to overcome the problems of classical DSR by introducing shutter gates and focuses on sound generation in the low-frequency domain. Combining the idea of classical DSR with a redirection mechanism leads to a gain of 20[Formula: see text]dB per decade regarding the sound pressure for decreasing frequency values. We present multiple array designs and possible embodiments for ADSR as well as an in depth view of excitation and optimization approaches. Finally, numerical investigations are used in order to demonstrate the potential of ADSR especially in the mid- to low-frequency range.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"3 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Method for Sound Generation Based on Digital Sound Reconstruction\",\"authors\":\"D. Mayrhofer, M. Kaltenbacher\",\"doi\":\"10.1142/s2591728521500213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the general idea of Digital Sound Reconstruction (DSR) and analyze its inherent limitations. Based on this discussion, a new method which we call Advanced Digital Sound Reconstruction (ADSR) is introduced and analyzed in detail. This method aims to overcome the problems of classical DSR by introducing shutter gates and focuses on sound generation in the low-frequency domain. Combining the idea of classical DSR with a redirection mechanism leads to a gain of 20[Formula: see text]dB per decade regarding the sound pressure for decreasing frequency values. We present multiple array designs and possible embodiments for ADSR as well as an in depth view of excitation and optimization approaches. Finally, numerical investigations are used in order to demonstrate the potential of ADSR especially in the mid- to low-frequency range.\",\"PeriodicalId\":55976,\"journal\":{\"name\":\"Journal of Theoretical and Computational Acoustics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Computational Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s2591728521500213\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s2591728521500213","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们考虑了数字声音重建(DSR)的一般思想,并分析了其固有的局限性。在此基础上,介绍并详细分析了一种新方法——高级数字声音重建(ADSR)。该方法旨在通过引入卷闸门来克服经典DSR的问题,并重点研究低频域的声音产生。将经典DSR的思想与重定向机制相结合,对于降低频率值的声压,每十年的增益为20 dB[公式:见文本]。我们提出了ADSR的多种阵列设计和可能的实施例,以及对激励和优化方法的深入研究。最后,用数值研究来证明ADSR的潜力,特别是在中低频范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Method for Sound Generation Based on Digital Sound Reconstruction
In this paper, we consider the general idea of Digital Sound Reconstruction (DSR) and analyze its inherent limitations. Based on this discussion, a new method which we call Advanced Digital Sound Reconstruction (ADSR) is introduced and analyzed in detail. This method aims to overcome the problems of classical DSR by introducing shutter gates and focuses on sound generation in the low-frequency domain. Combining the idea of classical DSR with a redirection mechanism leads to a gain of 20[Formula: see text]dB per decade regarding the sound pressure for decreasing frequency values. We present multiple array designs and possible embodiments for ADSR as well as an in depth view of excitation and optimization approaches. Finally, numerical investigations are used in order to demonstrate the potential of ADSR especially in the mid- to low-frequency range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Theoretical and Computational Acoustics
Journal of Theoretical and Computational Acoustics Computer Science-Computer Science Applications
CiteScore
2.90
自引率
42.10%
发文量
26
期刊介绍: The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信