C2边界域的全局Newlander-Nirenberg定理

Pub Date : 2020-05-15 DOI:10.1307/mmj/20216084
Chun Gan, Xianghong Gong
{"title":"C2边界域的全局Newlander-Nirenberg定理","authors":"Chun Gan, Xianghong Gong","doi":"10.1307/mmj/20216084","DOIUrl":null,"url":null,"abstract":"The Newlander-Nirenberg theorem says that a formally integrable complex structure is locally equivalent to the standard complex structure in the complex Euclidean space. In this paper, we consider two natural generalizations of the Newlander-Nirenberg theorem under the presence of a $C^2$ strictly pseudoconvex boundary. When a given formally integrable complex structure $X$ is defined on the closure of a bounded strictly pseudoconvex domain with $C^2$ boundary $D\\subset \\mathbb{C}^n$, we show the existence of global holomorphic coordinate systems defined on $\\overline{D}$ that transform $X$ into the standard complex structure provided that $X$ is sufficiently close to the standard complex structure. Moreover, we show that such closeness is stable under a small $C^2$ perturbation of $\\partial D$. As a consequence, when a given formally integrable complex structure is defined on a one-sided neighborhood of some point in a $C^2$ real hypersurface $M\\subset \\mathbb{C}^n$, we prove the existence of local one-sided holomorphic coordinate systems provided that $M$ is strictly pseudoconvex with respect to the given complex structure. We also obtain results when the structures are finite smooth.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global Newlander–Nirenberg Theorem for Domains with C2 Boundary\",\"authors\":\"Chun Gan, Xianghong Gong\",\"doi\":\"10.1307/mmj/20216084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Newlander-Nirenberg theorem says that a formally integrable complex structure is locally equivalent to the standard complex structure in the complex Euclidean space. In this paper, we consider two natural generalizations of the Newlander-Nirenberg theorem under the presence of a $C^2$ strictly pseudoconvex boundary. When a given formally integrable complex structure $X$ is defined on the closure of a bounded strictly pseudoconvex domain with $C^2$ boundary $D\\\\subset \\\\mathbb{C}^n$, we show the existence of global holomorphic coordinate systems defined on $\\\\overline{D}$ that transform $X$ into the standard complex structure provided that $X$ is sufficiently close to the standard complex structure. Moreover, we show that such closeness is stable under a small $C^2$ perturbation of $\\\\partial D$. As a consequence, when a given formally integrable complex structure is defined on a one-sided neighborhood of some point in a $C^2$ real hypersurface $M\\\\subset \\\\mathbb{C}^n$, we prove the existence of local one-sided holomorphic coordinate systems provided that $M$ is strictly pseudoconvex with respect to the given complex structure. We also obtain results when the structures are finite smooth.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Newlander-Nirenberg定理指出,形式可积的复结构与复欧几里得空间中的标准复结构是局部等价的。在a的存在下,我们考虑了Newlander-Nirenberg定理的两种自然推广 $C^2$ 严格伪凸边界。当一个给定的形式可积复结构 $X$ 在有界严格伪凸域的闭包上定义 $C^2$ 边界 $D\subset \mathbb{C}^n$,证明了定义在上的全局全纯坐标系的存在性 $\overline{D}$ 这个变换 $X$ 变成标准的复杂结构 $X$ 足够接近标准的复杂结构。此外,我们还证明了在一个小的 $C^2$ 的摄动 $\partial D$. 因此,当一个给定的形式可积复结构在a中某点的单侧邻域上被定义时 $C^2$ 实超曲面 $M\subset \mathbb{C}^n$,证明了局部单侧全纯坐标系的存在性 $M$ 对于给定的复杂结构是严格假凸的。我们也得到了结构有限光滑时的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global Newlander–Nirenberg Theorem for Domains with C2 Boundary
The Newlander-Nirenberg theorem says that a formally integrable complex structure is locally equivalent to the standard complex structure in the complex Euclidean space. In this paper, we consider two natural generalizations of the Newlander-Nirenberg theorem under the presence of a $C^2$ strictly pseudoconvex boundary. When a given formally integrable complex structure $X$ is defined on the closure of a bounded strictly pseudoconvex domain with $C^2$ boundary $D\subset \mathbb{C}^n$, we show the existence of global holomorphic coordinate systems defined on $\overline{D}$ that transform $X$ into the standard complex structure provided that $X$ is sufficiently close to the standard complex structure. Moreover, we show that such closeness is stable under a small $C^2$ perturbation of $\partial D$. As a consequence, when a given formally integrable complex structure is defined on a one-sided neighborhood of some point in a $C^2$ real hypersurface $M\subset \mathbb{C}^n$, we prove the existence of local one-sided holomorphic coordinate systems provided that $M$ is strictly pseudoconvex with respect to the given complex structure. We also obtain results when the structures are finite smooth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信