{"title":"甜菜根纤维共聚β-环糊精聚氨酯(生物聚合物)净化水体中有机物和溢油污染。","authors":"J. Rima, Karine Assakera","doi":"10.4172/2157-7463.1000368","DOIUrl":null,"url":null,"abstract":"Spilled polycyclic aromatic hydrocarbons (PAH), oils and dyes on water surface involve a big environmental risk. The clean-up of such pollutants consist a challenge from economic and environmental points of view. The absorbent of oils or PAH must have buoyancy, high uptake ratio oil/water, reusable and biodegradable. In this study, β-Cyclodextrin polymerized with beetroot fibers (Bio-polymer), was prepared and applied to remove oil, polycyclic aromatic hydrocarbons (PAH) and dyes from water. The Bio-polymer was prepared by copolymerization of beetroot with β-cyclodextrin polyurethane at 70°C. The prepared new material was characterized by means of granulometry, Scanning Electronic Microscopy and FTIR. The investigation into the use of cross-linked cyclodextrin polyurethanes with beetroot fibers as adsorbents for organic pollutants showed significant results. The effectiveness to eliminate dyes such as methylene blue and Rhoda mine B with concentrations around 100 ppm and 150 ppm respectively, was more than 99%, while the pyrene, which was chosen as an example among PAHs, showed a potential of elimination exceeding the 96 % for solutions of 30 ppm. Furthermore, spilled motor oils were tested and showed an efficacy exceeding the 90g oil per one g of biopolymers. The results indicated that the biopolymer developed in this study is a promising material for the removal of mixed pollutants from industrial wastewater and good sorbent for spilled oil clean-up applications. After the biopolymer’s application, yeast has been used for its biodegradation. The biodegradation, led to complete mineralization of organic contaminants and transform them into carbon dioxide, water, and inorganic compounds. The biopolymer weight polluted was reduced by biodegradation process to 15% of its initial mass.","PeriodicalId":16699,"journal":{"name":"Journal of Petroleum & Environmental Biotechnology","volume":"4 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"β-Cyclodextrin Polyurethanes Copolymerized with Beetroot Fibers (Bio-Polymer) to Clean-Up Water Polluted by Organics and Spilled-Oil.\",\"authors\":\"J. Rima, Karine Assakera\",\"doi\":\"10.4172/2157-7463.1000368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spilled polycyclic aromatic hydrocarbons (PAH), oils and dyes on water surface involve a big environmental risk. The clean-up of such pollutants consist a challenge from economic and environmental points of view. The absorbent of oils or PAH must have buoyancy, high uptake ratio oil/water, reusable and biodegradable. In this study, β-Cyclodextrin polymerized with beetroot fibers (Bio-polymer), was prepared and applied to remove oil, polycyclic aromatic hydrocarbons (PAH) and dyes from water. The Bio-polymer was prepared by copolymerization of beetroot with β-cyclodextrin polyurethane at 70°C. The prepared new material was characterized by means of granulometry, Scanning Electronic Microscopy and FTIR. The investigation into the use of cross-linked cyclodextrin polyurethanes with beetroot fibers as adsorbents for organic pollutants showed significant results. The effectiveness to eliminate dyes such as methylene blue and Rhoda mine B with concentrations around 100 ppm and 150 ppm respectively, was more than 99%, while the pyrene, which was chosen as an example among PAHs, showed a potential of elimination exceeding the 96 % for solutions of 30 ppm. Furthermore, spilled motor oils were tested and showed an efficacy exceeding the 90g oil per one g of biopolymers. The results indicated that the biopolymer developed in this study is a promising material for the removal of mixed pollutants from industrial wastewater and good sorbent for spilled oil clean-up applications. After the biopolymer’s application, yeast has been used for its biodegradation. The biodegradation, led to complete mineralization of organic contaminants and transform them into carbon dioxide, water, and inorganic compounds. The biopolymer weight polluted was reduced by biodegradation process to 15% of its initial mass.\",\"PeriodicalId\":16699,\"journal\":{\"name\":\"Journal of Petroleum & Environmental Biotechnology\",\"volume\":\"4 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum & Environmental Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7463.1000368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum & Environmental Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7463.1000368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
β-Cyclodextrin Polyurethanes Copolymerized with Beetroot Fibers (Bio-Polymer) to Clean-Up Water Polluted by Organics and Spilled-Oil.
Spilled polycyclic aromatic hydrocarbons (PAH), oils and dyes on water surface involve a big environmental risk. The clean-up of such pollutants consist a challenge from economic and environmental points of view. The absorbent of oils or PAH must have buoyancy, high uptake ratio oil/water, reusable and biodegradable. In this study, β-Cyclodextrin polymerized with beetroot fibers (Bio-polymer), was prepared and applied to remove oil, polycyclic aromatic hydrocarbons (PAH) and dyes from water. The Bio-polymer was prepared by copolymerization of beetroot with β-cyclodextrin polyurethane at 70°C. The prepared new material was characterized by means of granulometry, Scanning Electronic Microscopy and FTIR. The investigation into the use of cross-linked cyclodextrin polyurethanes with beetroot fibers as adsorbents for organic pollutants showed significant results. The effectiveness to eliminate dyes such as methylene blue and Rhoda mine B with concentrations around 100 ppm and 150 ppm respectively, was more than 99%, while the pyrene, which was chosen as an example among PAHs, showed a potential of elimination exceeding the 96 % for solutions of 30 ppm. Furthermore, spilled motor oils were tested and showed an efficacy exceeding the 90g oil per one g of biopolymers. The results indicated that the biopolymer developed in this study is a promising material for the removal of mixed pollutants from industrial wastewater and good sorbent for spilled oil clean-up applications. After the biopolymer’s application, yeast has been used for its biodegradation. The biodegradation, led to complete mineralization of organic contaminants and transform them into carbon dioxide, water, and inorganic compounds. The biopolymer weight polluted was reduced by biodegradation process to 15% of its initial mass.