你在哪里?:利用智能手机传感器数据进行人体活动识别

Gulustan Dogan, Iremnaz Cay, Sinem Sena Ertas, Seref Recep Keskin, Nouran Alotaibi, Elif Sahin
{"title":"你在哪里?:利用智能手机传感器数据进行人体活动识别","authors":"Gulustan Dogan, Iremnaz Cay, Sinem Sena Ertas, Seref Recep Keskin, Nouran Alotaibi, Elif Sahin","doi":"10.1145/3410530.3414354","DOIUrl":null,"url":null,"abstract":"This paper describes our submission as Team-Petrichor to the competition that was organized by the SHL recognition challenge dataset authors. We compared multiple machine learning approach for classifying eight different activities (Still, Walk, Run, Bike, Car, Bus, Train, Subway). The first step was feature engineering, a wide set of statistical domain features were computed and their quality was evaluated. Finally, the appropriate machine learning model was chosen. The recognition result for the testing dataset will be presented in the summary paper of the SHL recognition challenge.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Where are you?: human activity recognition with smartphone sensor data\",\"authors\":\"Gulustan Dogan, Iremnaz Cay, Sinem Sena Ertas, Seref Recep Keskin, Nouran Alotaibi, Elif Sahin\",\"doi\":\"10.1145/3410530.3414354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our submission as Team-Petrichor to the competition that was organized by the SHL recognition challenge dataset authors. We compared multiple machine learning approach for classifying eight different activities (Still, Walk, Run, Bike, Car, Bus, Train, Subway). The first step was feature engineering, a wide set of statistical domain features were computed and their quality was evaluated. Finally, the appropriate machine learning model was chosen. The recognition result for the testing dataset will be presented in the summary paper of the SHL recognition challenge.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了我们作为Team-Petrichor参加由SHL识别挑战数据集作者组织的竞赛。我们比较了多种机器学习方法来分类八种不同的活动(静止、步行、跑步、自行车、汽车、公共汽车、火车、地铁)。第一步是特征工程,计算一组广泛的统计域特征并对其质量进行评估。最后,选择合适的机器学习模型。测试数据集的识别结果将在SHL识别挑战的总结论文中提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Where are you?: human activity recognition with smartphone sensor data
This paper describes our submission as Team-Petrichor to the competition that was organized by the SHL recognition challenge dataset authors. We compared multiple machine learning approach for classifying eight different activities (Still, Walk, Run, Bike, Car, Bus, Train, Subway). The first step was feature engineering, a wide set of statistical domain features were computed and their quality was evaluated. Finally, the appropriate machine learning model was chosen. The recognition result for the testing dataset will be presented in the summary paper of the SHL recognition challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信