{"title":"广义Campanato空间临界情况下的欧拉方程","authors":"Dongho Chae , Jörg Wolf","doi":"10.1016/j.anihpc.2020.06.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper we prove local in time well-posedness for the incompressible Euler equations in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span> for the initial data in </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, which corresponds to a critical case of the generalized Campanato spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>q</mi><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. The space is studied extensively in our companion paper <span>[9]</span>, and in the critical case we have embeddings <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>↪</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>↪</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span><span> are the Besov space and the Lipschitz space respectively. In particular </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> contains non-<span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span><span> functions as well as linearly growing functions at spatial infinity. We can also construct a class of simple initial velocity belonging to </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, for which the solution to the Euler equations blows up in finite time.</p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 2","pages":"Pages 201-241"},"PeriodicalIF":1.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.06.006","citationCount":"2","resultStr":"{\"title\":\"The Euler equations in a critical case of the generalized Campanato space\",\"authors\":\"Dongho Chae , Jörg Wolf\",\"doi\":\"10.1016/j.anihpc.2020.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper we prove local in time well-posedness for the incompressible Euler equations in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span> for the initial data in </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, which corresponds to a critical case of the generalized Campanato spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>q</mi><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. The space is studied extensively in our companion paper <span>[9]</span>, and in the critical case we have embeddings <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>↪</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>↪</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span><span> are the Besov space and the Lipschitz space respectively. In particular </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> contains non-<span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span><span> functions as well as linearly growing functions at spatial infinity. We can also construct a class of simple initial velocity belonging to </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, for which the solution to the Euler equations blows up in finite time.</p></div>\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"38 2\",\"pages\":\"Pages 201-241\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.06.006\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144920300664\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920300664","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The Euler equations in a critical case of the generalized Campanato space
In this paper we prove local in time well-posedness for the incompressible Euler equations in for the initial data in , which corresponds to a critical case of the generalized Campanato spaces . The space is studied extensively in our companion paper [9], and in the critical case we have embeddings , where and are the Besov space and the Lipschitz space respectively. In particular contains non- functions as well as linearly growing functions at spatial infinity. We can also construct a class of simple initial velocity belonging to , for which the solution to the Euler equations blows up in finite time.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.