广义Campanato空间临界情况下的欧拉方程

IF 1.8 1区 数学 Q1 MATHEMATICS, APPLIED
Dongho Chae , Jörg Wolf
{"title":"广义Campanato空间临界情况下的欧拉方程","authors":"Dongho Chae ,&nbsp;Jörg Wolf","doi":"10.1016/j.anihpc.2020.06.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper we prove local in time well-posedness for the incompressible Euler equations in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span> for the initial data in </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, which corresponds to a critical case of the generalized Campanato spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>q</mi><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. The space is studied extensively in our companion paper <span>[9]</span>, and in the critical case we have embeddings <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>↪</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>↪</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span><span> are the Besov space and the Lipschitz space respectively. In particular </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> contains non-<span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span><span> functions as well as linearly growing functions at spatial infinity. We can also construct a class of simple initial velocity belonging to </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, for which the solution to the Euler equations blows up in finite time.</p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 2","pages":"Pages 201-241"},"PeriodicalIF":1.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.06.006","citationCount":"2","resultStr":"{\"title\":\"The Euler equations in a critical case of the generalized Campanato space\",\"authors\":\"Dongho Chae ,&nbsp;Jörg Wolf\",\"doi\":\"10.1016/j.anihpc.2020.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper we prove local in time well-posedness for the incompressible Euler equations in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span> for the initial data in </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, which corresponds to a critical case of the generalized Campanato spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>q</mi><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. The space is studied extensively in our companion paper <span>[9]</span>, and in the critical case we have embeddings <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>↪</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>↪</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span><span> are the Besov space and the Lipschitz space respectively. In particular </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> contains non-<span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span><span> functions as well as linearly growing functions at spatial infinity. We can also construct a class of simple initial velocity belonging to </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, for which the solution to the Euler equations blows up in finite time.</p></div>\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"38 2\",\"pages\":\"Pages 201-241\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.06.006\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144920300664\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920300664","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文证明了L1(1)1(Rn)中初始数据在Rn中不可压缩欧拉方程的局部时间适定性,这对应于广义Campanato空间Lq(N)s(Rn)的一个临界情况。在我们的同伴论文[9]中对该空间进行了广泛的研究,在临界情况下,我们有嵌入B∞,11(Rn)“L1(1)”1(Rn)“C0,1(Rn)”,其中B∞,11(Rn)和C0,1(Rn)分别是Besov空间和Lipschitz空间。特别是L1(1)1(Rn)包含非c1 (Rn)函数以及空间无穷远处的线性增长函数。我们也可以构造一类属于L1(1)1(Rn)的简单初速度,其欧拉方程的解在有限时间内爆破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Euler equations in a critical case of the generalized Campanato space

In this paper we prove local in time well-posedness for the incompressible Euler equations in Rn for the initial data in L1(1)1(Rn), which corresponds to a critical case of the generalized Campanato spaces Lq(N)s(Rn). The space is studied extensively in our companion paper [9], and in the critical case we have embeddings B,11(Rn)L1(1)1(Rn)C0,1(Rn), where B,11(Rn) and C0,1(Rn) are the Besov space and the Lipschitz space respectively. In particular L1(1)1(Rn) contains non-C1(Rn) functions as well as linearly growing functions at spatial infinity. We can also construct a class of simple initial velocity belonging to L1(1)1(Rn), for which the solution to the Euler equations blows up in finite time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.30%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信