基于CT图像的三维肝脏分割与模型重建

Ya-Yun Cheng, Hsiao-Mei Chang, Hong-Ren Su, S. Lai, Kai-Che Liu, Chien Lin
{"title":"基于CT图像的三维肝脏分割与模型重建","authors":"Ya-Yun Cheng, Hsiao-Mei Chang, Hong-Ren Su, S. Lai, Kai-Che Liu, Chien Lin","doi":"10.1109/ICBEB.2012.18","DOIUrl":null,"url":null,"abstract":"In this paper, we present a system for segmenting the 3D liver region from CT images and reconstructing its 3D model. The segmentation is accomplished in 3-D space which is extended from the user controlled 2-D random walker technique and implemented by a slice-section method. After obtaining the 3D liver segmentation result, we apply the surface reconstruction algorithm based on bipartite polar classification to build the 3-D liver surface model. In the experimental results, we apply the proposed algorithm to ten test CT datasets to evaluate its accuracy and we demonstrate the good accuracy compared with the human labeled results.","PeriodicalId":6374,"journal":{"name":"2012 International Conference on Biomedical Engineering and Biotechnology","volume":"23 1","pages":"654-657"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"3D Liver Segmentation and Model Reconstruction from CT Images\",\"authors\":\"Ya-Yun Cheng, Hsiao-Mei Chang, Hong-Ren Su, S. Lai, Kai-Che Liu, Chien Lin\",\"doi\":\"10.1109/ICBEB.2012.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a system for segmenting the 3D liver region from CT images and reconstructing its 3D model. The segmentation is accomplished in 3-D space which is extended from the user controlled 2-D random walker technique and implemented by a slice-section method. After obtaining the 3D liver segmentation result, we apply the surface reconstruction algorithm based on bipartite polar classification to build the 3-D liver surface model. In the experimental results, we apply the proposed algorithm to ten test CT datasets to evaluate its accuracy and we demonstrate the good accuracy compared with the human labeled results.\",\"PeriodicalId\":6374,\"journal\":{\"name\":\"2012 International Conference on Biomedical Engineering and Biotechnology\",\"volume\":\"23 1\",\"pages\":\"654-657\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Biomedical Engineering and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBEB.2012.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Biomedical Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBEB.2012.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一个从CT图像中分割三维肝脏区域并重建其三维模型的系统。该方法在用户控制的二维随机行走技术的基础上,扩展到三维空间,采用切片法实现图像分割。在获得肝脏三维分割结果后,应用基于二部极分类的表面重建算法建立肝脏三维表面模型。在实验结果中,我们将该算法应用于10个测试CT数据集来评估其准确性,并与人类标记的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Liver Segmentation and Model Reconstruction from CT Images
In this paper, we present a system for segmenting the 3D liver region from CT images and reconstructing its 3D model. The segmentation is accomplished in 3-D space which is extended from the user controlled 2-D random walker technique and implemented by a slice-section method. After obtaining the 3D liver segmentation result, we apply the surface reconstruction algorithm based on bipartite polar classification to build the 3-D liver surface model. In the experimental results, we apply the proposed algorithm to ten test CT datasets to evaluate its accuracy and we demonstrate the good accuracy compared with the human labeled results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信