主动半监督学习分析

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lilian Berton, Felipe Mitsuishi, Didier Vega Oliveros
{"title":"主动半监督学习分析","authors":"Lilian Berton, Felipe Mitsuishi, Didier Vega Oliveros","doi":"10.1145/3555776.3577621","DOIUrl":null,"url":null,"abstract":"In many real-world applications, labeled instances are costly and infeasible to obtain large training sets. This way, learning strategies that do the most with fewer labels are calling attention, such as semi-supervised learning (SSL) and active learning (AL). Active learning allows querying instance to be labeled in the uncertain region and semi-supervised learning classify with a small set of labeled data. We combine both strategies to investigate how AL improves SSL performance, considering both classification results and computational cost. We present experimental results comparing five AL strategies on seven benchmark datasets encompassing synthetic data, handwritten digit and image recognition, and brain-computing interaction tasks. The best single AL strategy was the ranked batch mode, but it has the highest computational cost. On the other hand, using a consensus committee approach leads to the highest results and low-processing footprints.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"5 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of active semi-supervised learning\",\"authors\":\"Lilian Berton, Felipe Mitsuishi, Didier Vega Oliveros\",\"doi\":\"10.1145/3555776.3577621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many real-world applications, labeled instances are costly and infeasible to obtain large training sets. This way, learning strategies that do the most with fewer labels are calling attention, such as semi-supervised learning (SSL) and active learning (AL). Active learning allows querying instance to be labeled in the uncertain region and semi-supervised learning classify with a small set of labeled data. We combine both strategies to investigate how AL improves SSL performance, considering both classification results and computational cost. We present experimental results comparing five AL strategies on seven benchmark datasets encompassing synthetic data, handwritten digit and image recognition, and brain-computing interaction tasks. The best single AL strategy was the ranked batch mode, but it has the highest computational cost. On the other hand, using a consensus committee approach leads to the highest results and low-processing footprints.\",\"PeriodicalId\":42971,\"journal\":{\"name\":\"Applied Computing Review\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555776.3577621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在许多实际应用中,标记实例是昂贵的,并且不可能获得大型训练集。这样,用更少的标签做得最多的学习策略引起了人们的注意,比如半监督学习(SSL)和主动学习(AL)。主动学习允许在不确定区域对查询实例进行标记,半监督学习允许使用少量标记数据进行分类。我们结合这两种策略来研究人工智能如何提高SSL性能,同时考虑分类结果和计算成本。我们在七个基准数据集上比较了五种人工智能策略的实验结果,这些数据集包括合成数据、手写数字和图像识别以及脑计算交互任务。排名批处理模式是最佳的单人工智能策略,但它的计算成本最高。另一方面,使用共识委员会方法可以获得最高的结果和较低的处理足迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of active semi-supervised learning
In many real-world applications, labeled instances are costly and infeasible to obtain large training sets. This way, learning strategies that do the most with fewer labels are calling attention, such as semi-supervised learning (SSL) and active learning (AL). Active learning allows querying instance to be labeled in the uncertain region and semi-supervised learning classify with a small set of labeled data. We combine both strategies to investigate how AL improves SSL performance, considering both classification results and computational cost. We present experimental results comparing five AL strategies on seven benchmark datasets encompassing synthetic data, handwritten digit and image recognition, and brain-computing interaction tasks. The best single AL strategy was the ranked batch mode, but it has the highest computational cost. On the other hand, using a consensus committee approach leads to the highest results and low-processing footprints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信