Yunfa Fu, Fan Wang, Yu Li, Anmin Gong, Qian Qian, Lei Su, Lei Zhao
{"title":"基于近红外光谱相关系数的单肢同侧不同想象动作的实时识别","authors":"Yunfa Fu, Fan Wang, Yu Li, Anmin Gong, Qian Qian, Lei Su, Lei Zhao","doi":"10.1515/bmt-2021-0422","DOIUrl":null,"url":null,"abstract":"Abstract Functional near-infrared spectroscopy (fNIRS) is a type of functional brain imaging. Brain-computer interfaces (BCIs) based on fNIRS have recently been implemented. Most existing fNIRS-BCI studies have involved off-line analyses, but few studies used online performance testing. Furthermore, existing online fNIRS-BCI experimental paradigms have not yet carried out studies using different imagined movements of the same side of a single limb. In the present study, a real-time fNIRS-BCI system was constructed to identify two imagined movements of the same side of a single limb (right forearm and right hand). Ten healthy subjects were recruited and fNIRS signal was collected and real-time analyzed with two imagined movements (leftward movement involving the right forearm and right-hand clenching). In addition to the mean and slope features of fNIRS signals, the correlation coefficient between fNIRS signals induced by different imagined actions was extracted. A support vector machine (SVM) was used to classify the imagined actions. The average accuracy of real-time classification of the two imagined movements was 72.25 ± 0.004%. The findings suggest that different imagined movements on the same side of a single limb can be recognized real-time based on fNIRS, which may help to further guide the practical application of online fNIRS-BCIs.","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":"2 1","pages":"173 - 183"},"PeriodicalIF":1.3000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real-time recognition of different imagined actions on the same side of a single limb based on the fNIRS correlation coefficient\",\"authors\":\"Yunfa Fu, Fan Wang, Yu Li, Anmin Gong, Qian Qian, Lei Su, Lei Zhao\",\"doi\":\"10.1515/bmt-2021-0422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Functional near-infrared spectroscopy (fNIRS) is a type of functional brain imaging. Brain-computer interfaces (BCIs) based on fNIRS have recently been implemented. Most existing fNIRS-BCI studies have involved off-line analyses, but few studies used online performance testing. Furthermore, existing online fNIRS-BCI experimental paradigms have not yet carried out studies using different imagined movements of the same side of a single limb. In the present study, a real-time fNIRS-BCI system was constructed to identify two imagined movements of the same side of a single limb (right forearm and right hand). Ten healthy subjects were recruited and fNIRS signal was collected and real-time analyzed with two imagined movements (leftward movement involving the right forearm and right-hand clenching). In addition to the mean and slope features of fNIRS signals, the correlation coefficient between fNIRS signals induced by different imagined actions was extracted. A support vector machine (SVM) was used to classify the imagined actions. The average accuracy of real-time classification of the two imagined movements was 72.25 ± 0.004%. The findings suggest that different imagined movements on the same side of a single limb can be recognized real-time based on fNIRS, which may help to further guide the practical application of online fNIRS-BCIs.\",\"PeriodicalId\":8900,\"journal\":{\"name\":\"Biomedical Engineering / Biomedizinische Technik\",\"volume\":\"2 1\",\"pages\":\"173 - 183\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering / Biomedizinische Technik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2021-0422\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2021-0422","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Real-time recognition of different imagined actions on the same side of a single limb based on the fNIRS correlation coefficient
Abstract Functional near-infrared spectroscopy (fNIRS) is a type of functional brain imaging. Brain-computer interfaces (BCIs) based on fNIRS have recently been implemented. Most existing fNIRS-BCI studies have involved off-line analyses, but few studies used online performance testing. Furthermore, existing online fNIRS-BCI experimental paradigms have not yet carried out studies using different imagined movements of the same side of a single limb. In the present study, a real-time fNIRS-BCI system was constructed to identify two imagined movements of the same side of a single limb (right forearm and right hand). Ten healthy subjects were recruited and fNIRS signal was collected and real-time analyzed with two imagined movements (leftward movement involving the right forearm and right-hand clenching). In addition to the mean and slope features of fNIRS signals, the correlation coefficient between fNIRS signals induced by different imagined actions was extracted. A support vector machine (SVM) was used to classify the imagined actions. The average accuracy of real-time classification of the two imagined movements was 72.25 ± 0.004%. The findings suggest that different imagined movements on the same side of a single limb can be recognized real-time based on fNIRS, which may help to further guide the practical application of online fNIRS-BCIs.
期刊介绍:
Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.