基于自调整控制的自适应参数和非参数多产品定价

Qi (George) Chen, Stefanus Jasin, Izak Duenyas
{"title":"基于自调整控制的自适应参数和非参数多产品定价","authors":"Qi (George) Chen, Stefanus Jasin, Izak Duenyas","doi":"10.2139/SSRN.2533468","DOIUrl":null,"url":null,"abstract":"We study a multi-period network revenue management (RM) problem where a seller sells multiple products made from multiple resources with finite capacity in an environment where the demand function is unknown a priori. The objective of the seller is to jointly learn the demand and price the products to minimize his expected revenue loss. Both the parametric and the nonparametric cases are considered in this paper. It is widely known in the literature that the revenue loss of any pricing policy under either case is at least k^{1/2} However, there is a considerable gap between this lower bound and the performance bound of the best known heuristic in the literature. To close the gap, we develop several self-adjusting heuristics with strong performance bound. For the general parametric case, our proposed Parametric Self-adjusting Control (PSC) attains a O(k^{1/2}) revenue loss, matching the theoretical lower bound. If the parametric demand function family further satisfies a well-separated condition, by taking advantage of passive learning, our proposed Accelerated Parametric Self-adjusting Control achieves a much sharper revenue loss of O(log^2 k). For the nonparametric case, our proposed Nonparametric Self-adjusting Control (NSC) obtains a revenue loss of O(k^{1/2+系} log k) for any arbitrarily small 系 > 0 if the demand function is sufficiently smooth. Our results suggest that in terms of performance, the nonparametric approach can be as robust as the parametric approach, at least asymptotically. All the proposed heuristics are computationally very efficient and can be used as a baseline for developing more sophisticated heuristics for large-scale problems.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adaptive Parametric and Nonparametric Multi-Product Pricing via Self-Adjusting Controls\",\"authors\":\"Qi (George) Chen, Stefanus Jasin, Izak Duenyas\",\"doi\":\"10.2139/SSRN.2533468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a multi-period network revenue management (RM) problem where a seller sells multiple products made from multiple resources with finite capacity in an environment where the demand function is unknown a priori. The objective of the seller is to jointly learn the demand and price the products to minimize his expected revenue loss. Both the parametric and the nonparametric cases are considered in this paper. It is widely known in the literature that the revenue loss of any pricing policy under either case is at least k^{1/2} However, there is a considerable gap between this lower bound and the performance bound of the best known heuristic in the literature. To close the gap, we develop several self-adjusting heuristics with strong performance bound. For the general parametric case, our proposed Parametric Self-adjusting Control (PSC) attains a O(k^{1/2}) revenue loss, matching the theoretical lower bound. If the parametric demand function family further satisfies a well-separated condition, by taking advantage of passive learning, our proposed Accelerated Parametric Self-adjusting Control achieves a much sharper revenue loss of O(log^2 k). For the nonparametric case, our proposed Nonparametric Self-adjusting Control (NSC) obtains a revenue loss of O(k^{1/2+系} log k) for any arbitrarily small 系 > 0 if the demand function is sufficiently smooth. Our results suggest that in terms of performance, the nonparametric approach can be as robust as the parametric approach, at least asymptotically. All the proposed heuristics are computationally very efficient and can be used as a baseline for developing more sophisticated heuristics for large-scale problems.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.2533468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2533468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了一个多周期网络收益管理问题,在需求函数先验未知的环境下,销售者销售由有限容量的多种资源生产的多种产品。卖方的目标是共同了解产品的需求和定价,以最小化其预期收益损失。本文考虑了参数和非参数两种情况。众所周知,在任何一种情况下,任何定价政策的收益损失都至少是k^{1/2}。然而,在这个下界和文献中最著名的启发式的性能界之间存在相当大的差距。为了缩小差距,我们开发了几个具有强性能界限的自调整启发式算法。对于一般参数情况,我们提出的参数自调整控制(PSC)获得O(k^{1/2})收益损失,符合理论下界。如果参数需求函数族进一步满足分离良好的条件,通过利用被动学习,我们提出的加速参数自调节控制实现了更大的收益损失O(log^2 k)。对于非参数情况,如果需求函数足够光滑,我们提出的非参数自调节控制(NSC)对于任意小的> 0的收益损失O(k^{1/2+ g} log k)。我们的结果表明,就性能而言,非参数方法可以像参数方法一样鲁棒,至少是渐近的。所有提出的启发式算法在计算上都非常高效,可以作为开发更复杂的大规模问题启发式算法的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Parametric and Nonparametric Multi-Product Pricing via Self-Adjusting Controls
We study a multi-period network revenue management (RM) problem where a seller sells multiple products made from multiple resources with finite capacity in an environment where the demand function is unknown a priori. The objective of the seller is to jointly learn the demand and price the products to minimize his expected revenue loss. Both the parametric and the nonparametric cases are considered in this paper. It is widely known in the literature that the revenue loss of any pricing policy under either case is at least k^{1/2} However, there is a considerable gap between this lower bound and the performance bound of the best known heuristic in the literature. To close the gap, we develop several self-adjusting heuristics with strong performance bound. For the general parametric case, our proposed Parametric Self-adjusting Control (PSC) attains a O(k^{1/2}) revenue loss, matching the theoretical lower bound. If the parametric demand function family further satisfies a well-separated condition, by taking advantage of passive learning, our proposed Accelerated Parametric Self-adjusting Control achieves a much sharper revenue loss of O(log^2 k). For the nonparametric case, our proposed Nonparametric Self-adjusting Control (NSC) obtains a revenue loss of O(k^{1/2+系} log k) for any arbitrarily small 系 > 0 if the demand function is sufficiently smooth. Our results suggest that in terms of performance, the nonparametric approach can be as robust as the parametric approach, at least asymptotically. All the proposed heuristics are computationally very efficient and can be used as a baseline for developing more sophisticated heuristics for large-scale problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信