用博弈论方法比较第五代区域供热系统实施的适宜商业模式

IF 1.4 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Ieva Pakere, Marika Kacare, L. Murauskaitė, Pei-Tzu Huang, A. Volkova
{"title":"用博弈论方法比较第五代区域供热系统实施的适宜商业模式","authors":"Ieva Pakere, Marika Kacare, L. Murauskaitė, Pei-Tzu Huang, A. Volkova","doi":"10.2478/rtuect-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract District Heating and Cooling (DHC) technology is widely recognised as a promising solution for reducing primary energy consumption and emissions. The 5th Generation District Heating and Cooling (5GDHC) network is the latest DHC concept characterised by low-temperature supply, bi-directional heating network operation, decentralised energy flows, and surplus heat sharing. Unlike the 4th Generation District Heating (4GDH) technology, the 5GDHC technology switched to a consumer/prosumer-oriented perspective. The introduction of 5GDHC solutions requires high investments, an important barrier to further developing DHC systems. Therefore, a novel pricing and business model could include introducing co-owners or energy managers into the system. Three different local market business models for 5GDHC at the community level have been tested. The reverse technical and economic simulation has been used for a feasibility study to determine the resources, business models, and combinations closest to the break-even point with lower costs and higher gains for all involved stakeholders.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"1 1","pages":"1 - 15"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Suitable Business Models for the 5th Generation District Heating System Implementation through Game Theory Approach\",\"authors\":\"Ieva Pakere, Marika Kacare, L. Murauskaitė, Pei-Tzu Huang, A. Volkova\",\"doi\":\"10.2478/rtuect-2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract District Heating and Cooling (DHC) technology is widely recognised as a promising solution for reducing primary energy consumption and emissions. The 5th Generation District Heating and Cooling (5GDHC) network is the latest DHC concept characterised by low-temperature supply, bi-directional heating network operation, decentralised energy flows, and surplus heat sharing. Unlike the 4th Generation District Heating (4GDH) technology, the 5GDHC technology switched to a consumer/prosumer-oriented perspective. The introduction of 5GDHC solutions requires high investments, an important barrier to further developing DHC systems. Therefore, a novel pricing and business model could include introducing co-owners or energy managers into the system. Three different local market business models for 5GDHC at the community level have been tested. The reverse technical and economic simulation has been used for a feasibility study to determine the resources, business models, and combinations closest to the break-even point with lower costs and higher gains for all involved stakeholders.\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":\"1 1\",\"pages\":\"1 - 15\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2023-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

区域供热和供冷(DHC)技术被广泛认为是减少一次能源消耗和排放的有前途的解决方案。第五代区域供热和供冷(5GDHC)网络是最新的区域供热和供冷概念,其特点是低温供应、双向供热网络运行、分散能源流动和余热共享。与第四代区域供热(4GDH)技术不同,5GDHC技术转向了以消费者/生产消费者为导向的角度。引入5GDHC解决方案需要高投资,这是进一步开发DHC系统的重要障碍。因此,一种新的定价和商业模式可能包括将共同所有者或能源管理者引入系统。5GDHC在社区层面已经测试了三种不同的地方市场商业模式。逆向技术和经济模拟已被用于可行性研究,以确定资源、商业模式和最接近盈亏平衡点的组合,为所有相关利益相关者提供更低的成本和更高的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Suitable Business Models for the 5th Generation District Heating System Implementation through Game Theory Approach
Abstract District Heating and Cooling (DHC) technology is widely recognised as a promising solution for reducing primary energy consumption and emissions. The 5th Generation District Heating and Cooling (5GDHC) network is the latest DHC concept characterised by low-temperature supply, bi-directional heating network operation, decentralised energy flows, and surplus heat sharing. Unlike the 4th Generation District Heating (4GDH) technology, the 5GDHC technology switched to a consumer/prosumer-oriented perspective. The introduction of 5GDHC solutions requires high investments, an important barrier to further developing DHC systems. Therefore, a novel pricing and business model could include introducing co-owners or energy managers into the system. Three different local market business models for 5GDHC at the community level have been tested. The reverse technical and economic simulation has been used for a feasibility study to determine the resources, business models, and combinations closest to the break-even point with lower costs and higher gains for all involved stakeholders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Climate Technologies
Environmental and Climate Technologies GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
3.10
自引率
28.60%
发文量
0
审稿时长
16 weeks
期刊介绍: Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信