弹性半空间上矩形板接触问题的求解

IF 0.3 Q4 ENGINEERING, MULTIDISCIPLINARY
S. V. Bosakov
{"title":"弹性半空间上矩形板接触问题的求解","authors":"S. V. Bosakov","doi":"10.21122/2227-1031-2020-19-3-224-229","DOIUrl":null,"url":null,"abstract":"Until the present time there is no exact solution to the contact problem for a rectangular plate on an elastic base with distribution properties. Practical analogues of this design are slab foundations widely used in construction. A lot of scientists have solved this problem in various ways. The methods of finite differences, B. N. Zhemochkin and power series do not distinguish a specific feature in contact stresses at the edges of the plate. The author of the paper has obtained an expansion of the Boussinesq solution for determining displacements of the elastic half-space surface in the form of a double series according to the Chebyshev polynomials of the first kind in a rectangular region. For the first time, such a representation for the symmetric part of the Boussinesq solution was obtained by V. I. Seimov and it has been applied to study symmetric vibrations of a rectangular stamp, taking into account inertial properties of the half-space. Using this expansion, the author gives a solution to the problem for a rectangular plate lying on an elastic half-space under the action of an arbitrarily applied concentrated force. In this case, the required displacements are specified in the form of a double row in the Chebyshev polynomials of the first kind. Contact stresses are also specified in the form of a double row according to the Chebyshev polynomials of the first kind with weight. In the integral equation of the contact problem integration over a rectangular region is performed while taking into account the orthogonality of the Chebyshev polynomials. In the resulting expression the coefficients are equal for the same products of the Chebyshev polynomials. The result is an infinite system of linear algebraic equations, which is solved by the amplification method. Thus the sought coefficients are found in the expansion for contact stresses.","PeriodicalId":42375,"journal":{"name":"Science & Technique","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"To Solution of Contact Problem for Rectangular Plate on Elastic Half-Space\",\"authors\":\"S. V. Bosakov\",\"doi\":\"10.21122/2227-1031-2020-19-3-224-229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Until the present time there is no exact solution to the contact problem for a rectangular plate on an elastic base with distribution properties. Practical analogues of this design are slab foundations widely used in construction. A lot of scientists have solved this problem in various ways. The methods of finite differences, B. N. Zhemochkin and power series do not distinguish a specific feature in contact stresses at the edges of the plate. The author of the paper has obtained an expansion of the Boussinesq solution for determining displacements of the elastic half-space surface in the form of a double series according to the Chebyshev polynomials of the first kind in a rectangular region. For the first time, such a representation for the symmetric part of the Boussinesq solution was obtained by V. I. Seimov and it has been applied to study symmetric vibrations of a rectangular stamp, taking into account inertial properties of the half-space. Using this expansion, the author gives a solution to the problem for a rectangular plate lying on an elastic half-space under the action of an arbitrarily applied concentrated force. In this case, the required displacements are specified in the form of a double row in the Chebyshev polynomials of the first kind. Contact stresses are also specified in the form of a double row according to the Chebyshev polynomials of the first kind with weight. In the integral equation of the contact problem integration over a rectangular region is performed while taking into account the orthogonality of the Chebyshev polynomials. In the resulting expression the coefficients are equal for the same products of the Chebyshev polynomials. The result is an infinite system of linear algebraic equations, which is solved by the amplification method. Thus the sought coefficients are found in the expansion for contact stresses.\",\"PeriodicalId\":42375,\"journal\":{\"name\":\"Science & Technique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science & Technique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/2227-1031-2020-19-3-224-229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2227-1031-2020-19-3-224-229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

对于具有分布特性的弹性基上矩形板的接触问题,到目前为止还没有精确的解。这种设计的实际类似物是建筑中广泛使用的板基础。许多科学家已经用各种方法解决了这个问题。有限差分法、B. N. Zhemochkin法和幂级数法不能区分板边缘接触应力的特定特征。本文根据第一类切比舍夫多项式,在矩形区域内得到了确定弹性半空间表面位移的双级数形式的Boussinesq解的展开式。V. I. Seimov首次得到了Boussinesq解的对称部分的这种表示,并将其应用于考虑半空间惯性性质的矩形戳戳的对称振动的研究。利用这一展开,作者给出了在任意集中力作用下位于弹性半空间上的矩形板的问题的解。在这种情况下,所需的位移以第一类切比雪夫多项式的双行形式指定。接触应力也按照第一类带权的切比雪夫多项式以双行形式表示。在接触问题的积分方程中,考虑切比雪夫多项式的正交性,对矩形区域进行积分。在得到的表达式中,对于相同的切比雪夫多项式的乘积,系数是相等的。结果是一个无穷线性代数方程组,用放大法求解。这样,所求的系数就可以在接触应力的展开中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
To Solution of Contact Problem for Rectangular Plate on Elastic Half-Space
Until the present time there is no exact solution to the contact problem for a rectangular plate on an elastic base with distribution properties. Practical analogues of this design are slab foundations widely used in construction. A lot of scientists have solved this problem in various ways. The methods of finite differences, B. N. Zhemochkin and power series do not distinguish a specific feature in contact stresses at the edges of the plate. The author of the paper has obtained an expansion of the Boussinesq solution for determining displacements of the elastic half-space surface in the form of a double series according to the Chebyshev polynomials of the first kind in a rectangular region. For the first time, such a representation for the symmetric part of the Boussinesq solution was obtained by V. I. Seimov and it has been applied to study symmetric vibrations of a rectangular stamp, taking into account inertial properties of the half-space. Using this expansion, the author gives a solution to the problem for a rectangular plate lying on an elastic half-space under the action of an arbitrarily applied concentrated force. In this case, the required displacements are specified in the form of a double row in the Chebyshev polynomials of the first kind. Contact stresses are also specified in the form of a double row according to the Chebyshev polynomials of the first kind with weight. In the integral equation of the contact problem integration over a rectangular region is performed while taking into account the orthogonality of the Chebyshev polynomials. In the resulting expression the coefficients are equal for the same products of the Chebyshev polynomials. The result is an infinite system of linear algebraic equations, which is solved by the amplification method. Thus the sought coefficients are found in the expansion for contact stresses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science & Technique
Science & Technique ENGINEERING, MULTIDISCIPLINARY-
自引率
50.00%
发文量
47
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信