当TEDDY遇到GrizzLY:触发道路除冰操作的时间依赖性发现

C. Robardet, Vasile-Marian Scuturici, M. Plantevit, A. Fraboulet
{"title":"当TEDDY遇到GrizzLY:触发道路除冰操作的时间依赖性发现","authors":"C. Robardet, Vasile-Marian Scuturici, M. Plantevit, A. Fraboulet","doi":"10.1145/2487575.2487706","DOIUrl":null,"url":null,"abstract":"Temporal dependencies between multiple sensor data sources link two types of events if the occurrence of one is repeatedly followed by the appearance of the other in a certain time interval. TEDDY algorithm aims at discovering such dependencies, identifying the statically significant time intervals with a chi2 test. We present how these dependencies can be used within the GrizzLY project to tackle an environmental and technical issue: the deicing of the roads. This project aims to wisely organize the deicing operations of an urban area, based on several sensor network measures of local atmospheric phenomena. A spatial and temporal dependency-based model is built from these data to predict freezing alerts.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"When TEDDY meets GrizzLY: temporal dependency discovery for triggering road deicing operations\",\"authors\":\"C. Robardet, Vasile-Marian Scuturici, M. Plantevit, A. Fraboulet\",\"doi\":\"10.1145/2487575.2487706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal dependencies between multiple sensor data sources link two types of events if the occurrence of one is repeatedly followed by the appearance of the other in a certain time interval. TEDDY algorithm aims at discovering such dependencies, identifying the statically significant time intervals with a chi2 test. We present how these dependencies can be used within the GrizzLY project to tackle an environmental and technical issue: the deicing of the roads. This project aims to wisely organize the deicing operations of an urban area, based on several sensor network measures of local atmospheric phenomena. A spatial and temporal dependency-based model is built from these data to predict freezing alerts.\",\"PeriodicalId\":20472,\"journal\":{\"name\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487575.2487706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多个传感器数据源之间的时间依赖关系将两种类型的事件联系起来,如果其中一种事件在一定时间间隔内重复出现,另一种事件就会出现。TEDDY算法旨在发现这种依赖关系,通过chi2测试识别静态显著的时间间隔。我们介绍了如何在GrizzLY项目中使用这些依赖关系来解决环境和技术问题:道路除冰。该项目旨在基于多个传感器网络对当地大气现象的测量,明智地组织城市地区的除冰作业。根据这些数据建立了一个基于空间和时间依赖性的模型来预测冰冻警报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When TEDDY meets GrizzLY: temporal dependency discovery for triggering road deicing operations
Temporal dependencies between multiple sensor data sources link two types of events if the occurrence of one is repeatedly followed by the appearance of the other in a certain time interval. TEDDY algorithm aims at discovering such dependencies, identifying the statically significant time intervals with a chi2 test. We present how these dependencies can be used within the GrizzLY project to tackle an environmental and technical issue: the deicing of the roads. This project aims to wisely organize the deicing operations of an urban area, based on several sensor network measures of local atmospheric phenomena. A spatial and temporal dependency-based model is built from these data to predict freezing alerts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信