实线上样条函数类的非对称逼近

IF 1 Q1 MATHEMATICS
N. Parfinovych
{"title":"实线上样条函数类的非对称逼近","authors":"N. Parfinovych","doi":"10.15330/cmp.13.3.831-837","DOIUrl":null,"url":null,"abstract":"Let $S_{h,m}$, $h>0$, $m\\in {\\mathbb N}$, be the spaces of polynomial splines of order $m$ of deficiency 1 with nodes at the points $kh$, $k\\in {\\mathbb Z}$. \nWe obtain exact values of the best $(\\alpha, \\beta)$-approximations by spaces $S_{h,m}\\cap L_1({\\mathbb R})$ in the space $L_1({\\mathbb R})$ for the classes $W^r_{1,1}({\\mathbb R})$, $r\\in {\\mathbb N}$, of functions, defined on the whole real line, integrable on ${\\mathbb R}$ and such that their $r$th derivatives belong to the unit ball of $L_1({\\mathbb R})$. \nThese results generalize the well-known G.G. Magaril-Ilyaev's and V.M. Tikhomirov's results on the exact values of the best approximations of classes $W^r_{1,1}({\\mathbb R})$ by splines from $S_{h,m}\\cap L_1({\\mathbb R})$ (case $\\alpha=\\beta=1$), as well as are non-periodic analogs of the V.F. Babenko's result on the best non-symmetric approximations of classes $W^r_1({\\mathbb T})$ of $2\\pi$-periodic functions with $r$th derivative belonging to the unit ball of $L_1({\\mathbb T})$ by periodic polynomial splines of minimal deficiency. \nAs a corollary of the main result, we obtain exact values of the best one-sided approximations of classes $W^r_1$ by polynomial splines from $S_{h,m}({\\mathbb T})$. This result is a periodic analogue of the results of A.A. Ligun and V.G. Doronin on the best one-sided approximations of classes $W^r_1$ by spaces $S_{h,m}({\\mathbb T})$.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-symmetric approximations of functional classes by splines on the real line\",\"authors\":\"N. Parfinovych\",\"doi\":\"10.15330/cmp.13.3.831-837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $S_{h,m}$, $h>0$, $m\\\\in {\\\\mathbb N}$, be the spaces of polynomial splines of order $m$ of deficiency 1 with nodes at the points $kh$, $k\\\\in {\\\\mathbb Z}$. \\nWe obtain exact values of the best $(\\\\alpha, \\\\beta)$-approximations by spaces $S_{h,m}\\\\cap L_1({\\\\mathbb R})$ in the space $L_1({\\\\mathbb R})$ for the classes $W^r_{1,1}({\\\\mathbb R})$, $r\\\\in {\\\\mathbb N}$, of functions, defined on the whole real line, integrable on ${\\\\mathbb R}$ and such that their $r$th derivatives belong to the unit ball of $L_1({\\\\mathbb R})$. \\nThese results generalize the well-known G.G. Magaril-Ilyaev's and V.M. Tikhomirov's results on the exact values of the best approximations of classes $W^r_{1,1}({\\\\mathbb R})$ by splines from $S_{h,m}\\\\cap L_1({\\\\mathbb R})$ (case $\\\\alpha=\\\\beta=1$), as well as are non-periodic analogs of the V.F. Babenko's result on the best non-symmetric approximations of classes $W^r_1({\\\\mathbb T})$ of $2\\\\pi$-periodic functions with $r$th derivative belonging to the unit ball of $L_1({\\\\mathbb T})$ by periodic polynomial splines of minimal deficiency. \\nAs a corollary of the main result, we obtain exact values of the best one-sided approximations of classes $W^r_1$ by polynomial splines from $S_{h,m}({\\\\mathbb T})$. This result is a periodic analogue of the results of A.A. Ligun and V.G. Doronin on the best one-sided approximations of classes $W^r_1$ by spaces $S_{h,m}({\\\\mathbb T})$.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.13.3.831-837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.13.3.831-837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $S_{h,m}$, $h>0$, $m\in {\mathbb N}$,为阶多项式样条的空间 $m$ 亏缺1在点上有节 $kh$, $k\in {\mathbb Z}$. 我们得到了最优值的精确值 $(\alpha, \beta)$-空间近似 $S_{h,m}\cap L_1({\mathbb R})$ 在太空中 $L_1({\mathbb R})$ 对于课程 $W^r_{1,1}({\mathbb R})$, $r\in {\mathbb N}$函数,定义在整条实线上,可积 ${\mathbb R}$ 这样他们 $r$导数属于单位球 $L_1({\mathbb R})$. 这些结果推广了著名的G.G. Magaril-Ilyaev和V.M. Tikhomirov关于类的最佳近似的精确值的结果 $W^r_{1,1}({\mathbb R})$ 由 $S_{h,m}\cap L_1({\mathbb R})$ (案例) $\alpha=\beta=1$),以及V.F. Babenko关于类的最佳非对称近似的结果的非周期类似物 $W^r_1({\mathbb T})$ 的 $2\pi$-周期函数 $r$的单位球的导数 $L_1({\mathbb T})$ 由周期多项式样条的最小缺陷。作为主要结果的一个推论,我们得到了类的最佳单侧近似的精确值 $W^r_1$ 通过多项式样条 $S_{h,m}({\mathbb T})$. 这个结果是a . a . Ligun和V.G. Doronin关于类的最佳单侧近似的结果的周期模拟 $W^r_1$ 按空格 $S_{h,m}({\mathbb T})$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-symmetric approximations of functional classes by splines on the real line
Let $S_{h,m}$, $h>0$, $m\in {\mathbb N}$, be the spaces of polynomial splines of order $m$ of deficiency 1 with nodes at the points $kh$, $k\in {\mathbb Z}$. We obtain exact values of the best $(\alpha, \beta)$-approximations by spaces $S_{h,m}\cap L_1({\mathbb R})$ in the space $L_1({\mathbb R})$ for the classes $W^r_{1,1}({\mathbb R})$, $r\in {\mathbb N}$, of functions, defined on the whole real line, integrable on ${\mathbb R}$ and such that their $r$th derivatives belong to the unit ball of $L_1({\mathbb R})$. These results generalize the well-known G.G. Magaril-Ilyaev's and V.M. Tikhomirov's results on the exact values of the best approximations of classes $W^r_{1,1}({\mathbb R})$ by splines from $S_{h,m}\cap L_1({\mathbb R})$ (case $\alpha=\beta=1$), as well as are non-periodic analogs of the V.F. Babenko's result on the best non-symmetric approximations of classes $W^r_1({\mathbb T})$ of $2\pi$-periodic functions with $r$th derivative belonging to the unit ball of $L_1({\mathbb T})$ by periodic polynomial splines of minimal deficiency. As a corollary of the main result, we obtain exact values of the best one-sided approximations of classes $W^r_1$ by polynomial splines from $S_{h,m}({\mathbb T})$. This result is a periodic analogue of the results of A.A. Ligun and V.G. Doronin on the best one-sided approximations of classes $W^r_1$ by spaces $S_{h,m}({\mathbb T})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信