基于记忆机制的增强差分进化

Raghav Prasad Parouha
{"title":"基于记忆机制的增强差分进化","authors":"Raghav Prasad Parouha","doi":"10.1109/ICACAT.2018.8933676","DOIUrl":null,"url":null,"abstract":"This article is to presents an enhanced DE (differential evolution) through memory based mechanism of PSO (particle swarm optimization). Because of uses the memory concept of PSO, the proposed DE is termed as ‘MBDE (memory based differential evolution)’ where new mutation and crossover operators are introduced. This proposed technique is implemented on four typical benchmark functions available in literature. Experimental results prove that the proposed technique produce faster and more accurate solutions than classical DE, traditional PSO and PSODE (an effective hybrid variant of PSO and DE).","PeriodicalId":6575,"journal":{"name":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Enhanced Differential Evolution through Memory Based Mechanism\",\"authors\":\"Raghav Prasad Parouha\",\"doi\":\"10.1109/ICACAT.2018.8933676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is to presents an enhanced DE (differential evolution) through memory based mechanism of PSO (particle swarm optimization). Because of uses the memory concept of PSO, the proposed DE is termed as ‘MBDE (memory based differential evolution)’ where new mutation and crossover operators are introduced. This proposed technique is implemented on four typical benchmark functions available in literature. Experimental results prove that the proposed technique produce faster and more accurate solutions than classical DE, traditional PSO and PSODE (an effective hybrid variant of PSO and DE).\",\"PeriodicalId\":6575,\"journal\":{\"name\":\"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)\",\"volume\":\"1 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACAT.2018.8933676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACAT.2018.8933676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于记忆的粒子群优化机制的差分进化算法。由于使用了PSO的记忆概念,所提出的DE被称为“MBDE(基于记忆的差分进化)”,其中引入了新的突变和交叉算子。该技术在文献中提供的四个典型基准函数上实现。实验结果表明,与经典DE、传统PSO和PSODE(一种有效的PSO和DE的混合变体)相比,该方法能够更快、更准确地得到解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Enhanced Differential Evolution through Memory Based Mechanism
This article is to presents an enhanced DE (differential evolution) through memory based mechanism of PSO (particle swarm optimization). Because of uses the memory concept of PSO, the proposed DE is termed as ‘MBDE (memory based differential evolution)’ where new mutation and crossover operators are introduced. This proposed technique is implemented on four typical benchmark functions available in literature. Experimental results prove that the proposed technique produce faster and more accurate solutions than classical DE, traditional PSO and PSODE (an effective hybrid variant of PSO and DE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信