Zhong-Min Tsai, Yu-Ju Tsai, Chien-Yao Wang, H. Liao, Y. Lin, Yung-Yu Chuang
{"title":"SearchTrack:多对象跟踪与对象定制搜索和运动感知功能","authors":"Zhong-Min Tsai, Yu-Ju Tsai, Chien-Yao Wang, H. Liao, Y. Lin, Yung-Yu Chuang","doi":"10.48550/arXiv.2210.16572","DOIUrl":null,"url":null,"abstract":"The paper presents a new method, SearchTrack, for multiple object tracking and segmentation (MOTS). To address the association problem between detected objects, SearchTrack proposes object-customized search and motion-aware features. By maintaining a Kalman filter for each object, we encode the predicted motion into the motion-aware feature, which includes both motion and appearance cues. For each object, a customized fully convolutional search engine is created by SearchTrack by learning a set of weights for dynamic convolutions specific to the object. Experiments demonstrate that our SearchTrack method outperforms competitive methods on both MOTS and MOT tasks, particularly in terms of association accuracy. Our method achieves 71.5 HOTA (car) and 57.6 HOTA (pedestrian) on the KITTI MOTS and 53.4 HOTA on MOT17. In terms of association accuracy, our method achieves state-of-the-art performance among 2D online methods on the KITTI MOTS. Our code is available at https://github.com/qa276390/SearchTrack.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"38 5 1","pages":"55"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SearchTrack: Multiple Object Tracking with Object-Customized Search and Motion-Aware Features\",\"authors\":\"Zhong-Min Tsai, Yu-Ju Tsai, Chien-Yao Wang, H. Liao, Y. Lin, Yung-Yu Chuang\",\"doi\":\"10.48550/arXiv.2210.16572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a new method, SearchTrack, for multiple object tracking and segmentation (MOTS). To address the association problem between detected objects, SearchTrack proposes object-customized search and motion-aware features. By maintaining a Kalman filter for each object, we encode the predicted motion into the motion-aware feature, which includes both motion and appearance cues. For each object, a customized fully convolutional search engine is created by SearchTrack by learning a set of weights for dynamic convolutions specific to the object. Experiments demonstrate that our SearchTrack method outperforms competitive methods on both MOTS and MOT tasks, particularly in terms of association accuracy. Our method achieves 71.5 HOTA (car) and 57.6 HOTA (pedestrian) on the KITTI MOTS and 53.4 HOTA on MOT17. In terms of association accuracy, our method achieves state-of-the-art performance among 2D online methods on the KITTI MOTS. Our code is available at https://github.com/qa276390/SearchTrack.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"38 5 1\",\"pages\":\"55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.16572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.16572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SearchTrack: Multiple Object Tracking with Object-Customized Search and Motion-Aware Features
The paper presents a new method, SearchTrack, for multiple object tracking and segmentation (MOTS). To address the association problem between detected objects, SearchTrack proposes object-customized search and motion-aware features. By maintaining a Kalman filter for each object, we encode the predicted motion into the motion-aware feature, which includes both motion and appearance cues. For each object, a customized fully convolutional search engine is created by SearchTrack by learning a set of weights for dynamic convolutions specific to the object. Experiments demonstrate that our SearchTrack method outperforms competitive methods on both MOTS and MOT tasks, particularly in terms of association accuracy. Our method achieves 71.5 HOTA (car) and 57.6 HOTA (pedestrian) on the KITTI MOTS and 53.4 HOTA on MOT17. In terms of association accuracy, our method achieves state-of-the-art performance among 2D online methods on the KITTI MOTS. Our code is available at https://github.com/qa276390/SearchTrack.