张量范畴的正性猜想简史

IF 0.1 Q4 MATHEMATICS
G. Mason
{"title":"张量范畴的正性猜想简史","authors":"G. Mason","doi":"10.21915/bimas.2019202","DOIUrl":null,"url":null,"abstract":"We show the existence of a finite group $G$ having an irreducible character $\\chi$ with Frobenius-Schur indicator $\\nu_2(\\chi){=}{+}1$ such that $\\chi^2$ has an irreducible constituent $\\varphi$ with $\\nu_2(\\varphi){=}{-}1$. This provides counterexamples to the positivity conjecture in rational CFT and a conjecture of Zhenghan Wang about pivotal fusion categories.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"16 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2017-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Brief History of the Positivity Conjecture in Tensor Category\",\"authors\":\"G. Mason\",\"doi\":\"10.21915/bimas.2019202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the existence of a finite group $G$ having an irreducible character $\\\\chi$ with Frobenius-Schur indicator $\\\\nu_2(\\\\chi){=}{+}1$ such that $\\\\chi^2$ has an irreducible constituent $\\\\varphi$ with $\\\\nu_2(\\\\varphi){=}{-}1$. This provides counterexamples to the positivity conjecture in rational CFT and a conjecture of Zhenghan Wang about pivotal fusion categories.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2019202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2019202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了有限群的存在性 $G$ 不可简化的具有不可简化特征的 $\chi$ 用Frobenius-Schur指示器 $\nu_2(\chi){=}{+}1$ 这样 $\chi^2$ 有不可约的成分吗 $\varphi$ 有 $\nu_2(\varphi){=}{-}1$. 这为有理CFT中的正性猜想和王正汉关于关键融合范畴的猜想提供了反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Brief History of the Positivity Conjecture in Tensor Category
We show the existence of a finite group $G$ having an irreducible character $\chi$ with Frobenius-Schur indicator $\nu_2(\chi){=}{+}1$ such that $\chi^2$ has an irreducible constituent $\varphi$ with $\nu_2(\varphi){=}{-}1$. This provides counterexamples to the positivity conjecture in rational CFT and a conjecture of Zhenghan Wang about pivotal fusion categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信