Ren Xingrun , Zhang Qinying , Huang Zhu , Su Wei , Yang Jiangao , Chen Hao
{"title":"直流磁控溅射沉积CrN薄膜的微观结构和摩擦学性能","authors":"Ren Xingrun , Zhang Qinying , Huang Zhu , Su Wei , Yang Jiangao , Chen Hao","doi":"10.1016/S1875-5372(18)30180-2","DOIUrl":null,"url":null,"abstract":"<div><p>CrN films were deposited on 304 stainless steel by DC reactive magnetron sputtering. The effects of nitrogen flow on the microstructure, mechanical and tribological properties were characterized by X-ray diffraction, scanning electron microscopy, atom force microscope, microhardness, wear tester and Nanomap 500LS profile. The results show that with the increase of nitrogen flow, the CrN films exhibit a preferential orientation in the (200) direction. The deposition rate of CrN films decreases with the increase of nitrogen flow. Besides, the surface roughness decreases first and then increases with further increase of nitrogen flow. As nitrogen flow increases from 15 cm<sup>3</sup>/min to 30 cm<sup>3</sup>/min, microhardness HV is improved from 5273 MPa to 10422 MPa, and then decreases to 9180 MPa when the nitrogen flow further increases to 35 cm<sup>3</sup>/min. Wear test results show that the CrN films deposited at nitrogen flow of 30 cm<sup>3</sup>/min achieve minimum friction coefficient value of 0.93 and wear rate 2.02×10<sup>−15</sup> m<sup>3</sup>·(N·m)<sup>−1</sup>, which present best wear resistance performance.</p></div>","PeriodicalId":21056,"journal":{"name":"稀有金属材料与工程","volume":"47 8","pages":"Pages 2283-2289"},"PeriodicalIF":0.6000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1875-5372(18)30180-2","citationCount":"8","resultStr":"{\"title\":\"Microstructure and Tribological Properties of CrN Films Deposited by Direct Current Magnetron Sputtering\",\"authors\":\"Ren Xingrun , Zhang Qinying , Huang Zhu , Su Wei , Yang Jiangao , Chen Hao\",\"doi\":\"10.1016/S1875-5372(18)30180-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CrN films were deposited on 304 stainless steel by DC reactive magnetron sputtering. The effects of nitrogen flow on the microstructure, mechanical and tribological properties were characterized by X-ray diffraction, scanning electron microscopy, atom force microscope, microhardness, wear tester and Nanomap 500LS profile. The results show that with the increase of nitrogen flow, the CrN films exhibit a preferential orientation in the (200) direction. The deposition rate of CrN films decreases with the increase of nitrogen flow. Besides, the surface roughness decreases first and then increases with further increase of nitrogen flow. As nitrogen flow increases from 15 cm<sup>3</sup>/min to 30 cm<sup>3</sup>/min, microhardness HV is improved from 5273 MPa to 10422 MPa, and then decreases to 9180 MPa when the nitrogen flow further increases to 35 cm<sup>3</sup>/min. Wear test results show that the CrN films deposited at nitrogen flow of 30 cm<sup>3</sup>/min achieve minimum friction coefficient value of 0.93 and wear rate 2.02×10<sup>−15</sup> m<sup>3</sup>·(N·m)<sup>−1</sup>, which present best wear resistance performance.</p></div>\",\"PeriodicalId\":21056,\"journal\":{\"name\":\"稀有金属材料与工程\",\"volume\":\"47 8\",\"pages\":\"Pages 2283-2289\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1875-5372(18)30180-2\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"稀有金属材料与工程\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875537218301802\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"稀有金属材料与工程","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875537218301802","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure and Tribological Properties of CrN Films Deposited by Direct Current Magnetron Sputtering
CrN films were deposited on 304 stainless steel by DC reactive magnetron sputtering. The effects of nitrogen flow on the microstructure, mechanical and tribological properties were characterized by X-ray diffraction, scanning electron microscopy, atom force microscope, microhardness, wear tester and Nanomap 500LS profile. The results show that with the increase of nitrogen flow, the CrN films exhibit a preferential orientation in the (200) direction. The deposition rate of CrN films decreases with the increase of nitrogen flow. Besides, the surface roughness decreases first and then increases with further increase of nitrogen flow. As nitrogen flow increases from 15 cm3/min to 30 cm3/min, microhardness HV is improved from 5273 MPa to 10422 MPa, and then decreases to 9180 MPa when the nitrogen flow further increases to 35 cm3/min. Wear test results show that the CrN films deposited at nitrogen flow of 30 cm3/min achieve minimum friction coefficient value of 0.93 and wear rate 2.02×10−15 m3·(N·m)−1, which present best wear resistance performance.