{"title":"用ECoG增强单个手指运动的分类","authors":"Lin Yao, Mahsa Shoaran","doi":"10.1109/IEEECONF44664.2019.9048649","DOIUrl":null,"url":null,"abstract":"Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we propose to exploit the temporal dynamics of the multi-channel electrocorticography (ECoG) signal from human subjects and modern machine learning algorithms to improve the finger-level movement classification accuracy. Using a decision tree ensemble as the classifier and the temporally-concatenated features of ECoG as input, we achieved an average classification accuracy of 71.3%±7.1% on 3 subjects, 6.3% better than the state-of-the-art approach based on conditional random fields (CRF) on the same dataset. Our proposed method could enable a high-performance and minimally invasive cortical BMI for paralyzed patients.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"8 1","pages":"2063-2066"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Enhanced Classification of Individual Finger Movements with ECoG\",\"authors\":\"Lin Yao, Mahsa Shoaran\",\"doi\":\"10.1109/IEEECONF44664.2019.9048649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we propose to exploit the temporal dynamics of the multi-channel electrocorticography (ECoG) signal from human subjects and modern machine learning algorithms to improve the finger-level movement classification accuracy. Using a decision tree ensemble as the classifier and the temporally-concatenated features of ECoG as input, we achieved an average classification accuracy of 71.3%±7.1% on 3 subjects, 6.3% better than the state-of-the-art approach based on conditional random fields (CRF) on the same dataset. Our proposed method could enable a high-performance and minimally invasive cortical BMI for paralyzed patients.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"8 1\",\"pages\":\"2063-2066\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced Classification of Individual Finger Movements with ECoG
Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we propose to exploit the temporal dynamics of the multi-channel electrocorticography (ECoG) signal from human subjects and modern machine learning algorithms to improve the finger-level movement classification accuracy. Using a decision tree ensemble as the classifier and the temporally-concatenated features of ECoG as input, we achieved an average classification accuracy of 71.3%±7.1% on 3 subjects, 6.3% better than the state-of-the-art approach based on conditional random fields (CRF) on the same dataset. Our proposed method could enable a high-performance and minimally invasive cortical BMI for paralyzed patients.