收敛类中主要的Pavlov - Korevaar - Dixon插值问题

IF 0.5 Q3 MATHEMATICS
R. Gaisin
{"title":"收敛类中主要的Pavlov - Korevaar - Dixon插值问题","authors":"R. Gaisin","doi":"10.13108/2017-9-4-22","DOIUrl":null,"url":null,"abstract":". We study an interpolation problem in the class of entire functions of exponential type determined by some majorant in a convergence class (non-quasianalytic majorant). In a smaller class, when the majorant possessed a concavity property, similar problem was studied by B. Berndtsson with the nodes at some subsequence of natural numbers. He obtained a solvability criterion for this interpolation problem. At that, he applied first the H¨ormander method for solving a 𝜕 -problem. In works by A.I. Pavlov, J. Korevaar and M. Dixon, interpolation sequences in the Berndtsson sense were applied successfully in a series of problems in the complex analysis. At that, there was found a relation with approximative properties of the system of powers { 𝑧 𝑝 𝑛 } and with the well known Polya and Macintyre problems. In this paper we establish the criterion of the interpolation property in a more general sense for an arbitrary sequence of real numbers. In the proof of the main theorem we employ a modification of the Berndtsson method.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"7 1","pages":"22-34"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pavlov - Korevaar - Dixon interpolation problem with majorant in convergence class\",\"authors\":\"R. Gaisin\",\"doi\":\"10.13108/2017-9-4-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study an interpolation problem in the class of entire functions of exponential type determined by some majorant in a convergence class (non-quasianalytic majorant). In a smaller class, when the majorant possessed a concavity property, similar problem was studied by B. Berndtsson with the nodes at some subsequence of natural numbers. He obtained a solvability criterion for this interpolation problem. At that, he applied first the H¨ormander method for solving a 𝜕 -problem. In works by A.I. Pavlov, J. Korevaar and M. Dixon, interpolation sequences in the Berndtsson sense were applied successfully in a series of problems in the complex analysis. At that, there was found a relation with approximative properties of the system of powers { 𝑧 𝑝 𝑛 } and with the well known Polya and Macintyre problems. In this paper we establish the criterion of the interpolation property in a more general sense for an arbitrary sequence of real numbers. In the proof of the main theorem we employ a modification of the Berndtsson method.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"7 1\",\"pages\":\"22-34\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-4-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-4-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

. 研究了一类由收敛类(非拟解析类)中的某个主量决定的指数型整函数的插值问题。在一个较小的类中,当主体具有凹性时,B. Berndtsson研究了类似的问题,其节点位于自然数的某子序列上。他得到了这个插值问题的可解性判据。在那里,他首先应用了H¨ormander方法来解决𝜕问题。在A.I. Pavlov、J. Korevaar和M. Dixon的著作中,Berndtsson意义上的插值序列成功地应用于复分析中的一系列问题。在此基础上,发现了幂系统的近似性质与著名的Polya和Macintyre问题之间的关系。本文对任意实数序列建立了更一般意义上的插值性质判据。在主要定理的证明中,我们采用了对伯恩得松方法的一个修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pavlov - Korevaar - Dixon interpolation problem with majorant in convergence class
. We study an interpolation problem in the class of entire functions of exponential type determined by some majorant in a convergence class (non-quasianalytic majorant). In a smaller class, when the majorant possessed a concavity property, similar problem was studied by B. Berndtsson with the nodes at some subsequence of natural numbers. He obtained a solvability criterion for this interpolation problem. At that, he applied first the H¨ormander method for solving a 𝜕 -problem. In works by A.I. Pavlov, J. Korevaar and M. Dixon, interpolation sequences in the Berndtsson sense were applied successfully in a series of problems in the complex analysis. At that, there was found a relation with approximative properties of the system of powers { 𝑧 𝑝 𝑛 } and with the well known Polya and Macintyre problems. In this paper we establish the criterion of the interpolation property in a more general sense for an arbitrary sequence of real numbers. In the proof of the main theorem we employ a modification of the Berndtsson method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信