LVDC和ELVDC电网的非递归系统辨识与故障检测

C. Strobl, Maximilian Schäfer, R. Rabenstein
{"title":"LVDC和ELVDC电网的非递归系统辨识与故障检测","authors":"C. Strobl, Maximilian Schäfer, R. Rabenstein","doi":"10.1109/ISCAS.2018.8351714","DOIUrl":null,"url":null,"abstract":"Low end extra low voltage direct current grids require selective fault protection designed for the specific application and system voltage. System identification and machine learning methods are helpful to identify, to localize and to classify occurring fault events. A category of non-recursive large-signal methods in the time domain for system identification and for refined fault detection and analysis is introduced.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"3 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-Recursive System Identification and Fault Detection in LVDC and ELVDC Grids\",\"authors\":\"C. Strobl, Maximilian Schäfer, R. Rabenstein\",\"doi\":\"10.1109/ISCAS.2018.8351714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low end extra low voltage direct current grids require selective fault protection designed for the specific application and system voltage. System identification and machine learning methods are helpful to identify, to localize and to classify occurring fault events. A category of non-recursive large-signal methods in the time domain for system identification and for refined fault detection and analysis is introduced.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"3 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

低端特低压直流电网需要针对特定应用和系统电压设计的选择性故障保护。系统识别和机器学习方法有助于识别、定位和分类发生的故障事件。介绍了一类用于系统辨识和精细故障检测与分析的时域非递归大信号方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Recursive System Identification and Fault Detection in LVDC and ELVDC Grids
Low end extra low voltage direct current grids require selective fault protection designed for the specific application and system voltage. System identification and machine learning methods are helpful to identify, to localize and to classify occurring fault events. A category of non-recursive large-signal methods in the time domain for system identification and for refined fault detection and analysis is introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信