AVC上有限块长度联合信信道编码的极大极小定理

Anuj S. Vora, Ankur A. Kulkarni
{"title":"AVC上有限块长度联合信信道编码的极大极小定理","authors":"Anuj S. Vora, Ankur A. Kulkarni","doi":"10.1109/NCC.2019.8732205","DOIUrl":null,"url":null,"abstract":"We pose the finite blocklength communication problem in the presence of a jammer as a zero-sum game between the encoder-decoder team and the jammer, where the communicators, as well as the jammer, are allowed locally randomized strategies. The minimax value of the game corresponds to joint sourcechannel coding over an Arbitrarily Varying Channel (AVC), which in the channel coding setting is known to admit a strong converse. The communicating team's problem is non-convex and hence, in general, a minimax theorem need not hold for this game. However, we show that an approximate minimax theorem holds in the sense that the minimax and maximin values of the game approach each other asymptotically. In particular, for rates above a critical threshold, both the minimax and maximin values approach unity. This result is stronger than the usual strong converse for channel coding over an AVC, which only says that the minimax value approaches unity for such rates.","PeriodicalId":6870,"journal":{"name":"2019 National Conference on Communications (NCC)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Minimax Theorem for Finite Blocklength Joint Source-Channel Coding over an AVC\",\"authors\":\"Anuj S. Vora, Ankur A. Kulkarni\",\"doi\":\"10.1109/NCC.2019.8732205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We pose the finite blocklength communication problem in the presence of a jammer as a zero-sum game between the encoder-decoder team and the jammer, where the communicators, as well as the jammer, are allowed locally randomized strategies. The minimax value of the game corresponds to joint sourcechannel coding over an Arbitrarily Varying Channel (AVC), which in the channel coding setting is known to admit a strong converse. The communicating team's problem is non-convex and hence, in general, a minimax theorem need not hold for this game. However, we show that an approximate minimax theorem holds in the sense that the minimax and maximin values of the game approach each other asymptotically. In particular, for rates above a critical threshold, both the minimax and maximin values approach unity. This result is stronger than the usual strong converse for channel coding over an AVC, which only says that the minimax value approaches unity for such rates.\",\"PeriodicalId\":6870,\"journal\":{\"name\":\"2019 National Conference on Communications (NCC)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2019.8732205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2019.8732205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们将存在干扰者的有限块长度通信问题作为编码器-解码器团队和干扰者之间的零和游戏,其中通信者和干扰者都允许使用局部随机策略。游戏的最小最大值对应于任意变化信道(AVC)上的联合源信道编码,这在信道编码设置中被认为是强反向的。沟通团队的问题是非凸的,因此,一般来说,极小极大定理不需要在这个博弈中成立。然而,我们证明了一个近似极小极大定理在这个意义上是成立的,即博弈的极小极大值和最大值是渐近的。特别是,对于高于临界阈值的速率,极小值和最大值接近于统一。这个结果比在AVC上的信道编码的通常的强反转更强,后者只说这种速率的最小最大值接近统一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Minimax Theorem for Finite Blocklength Joint Source-Channel Coding over an AVC
We pose the finite blocklength communication problem in the presence of a jammer as a zero-sum game between the encoder-decoder team and the jammer, where the communicators, as well as the jammer, are allowed locally randomized strategies. The minimax value of the game corresponds to joint sourcechannel coding over an Arbitrarily Varying Channel (AVC), which in the channel coding setting is known to admit a strong converse. The communicating team's problem is non-convex and hence, in general, a minimax theorem need not hold for this game. However, we show that an approximate minimax theorem holds in the sense that the minimax and maximin values of the game approach each other asymptotically. In particular, for rates above a critical threshold, both the minimax and maximin values approach unity. This result is stronger than the usual strong converse for channel coding over an AVC, which only says that the minimax value approaches unity for such rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信