非参数回归中方差估计量的比较

Chris Carter, G. Eagleson
{"title":"非参数回归中方差估计量的比较","authors":"Chris Carter, G. Eagleson","doi":"10.1111/J.2517-6161.1992.TB01450.X","DOIUrl":null,"url":null,"abstract":"SUMMARY We compare two estimators of error variance, both based on quadratic forms in the residuals about smoothing spline fits to data. The estimators are compared over the whole range of values of the smoothing parameter as well as for data-based choices of the smoothing parameter. We show that the commonly used estimator of variance has the serious drawback of underestimating the error variance for small choices of the smoothing parameter. This drawback is not shared by a simple, but more computationally intensive, alternative.","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"25 1","pages":"773-780"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"A Comparison of Variance Estimators in Nonparametric Regression\",\"authors\":\"Chris Carter, G. Eagleson\",\"doi\":\"10.1111/J.2517-6161.1992.TB01450.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SUMMARY We compare two estimators of error variance, both based on quadratic forms in the residuals about smoothing spline fits to data. The estimators are compared over the whole range of values of the smoothing parameter as well as for data-based choices of the smoothing parameter. We show that the commonly used estimator of variance has the serious drawback of underestimating the error variance for small choices of the smoothing parameter. This drawback is not shared by a simple, but more computationally intensive, alternative.\",\"PeriodicalId\":17425,\"journal\":{\"name\":\"Journal of the royal statistical society series b-methodological\",\"volume\":\"25 1\",\"pages\":\"773-780\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the royal statistical society series b-methodological\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.2517-6161.1992.TB01450.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1992.TB01450.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

我们比较了两种误差方差估计,这两种估计都是基于平滑样条拟合残差的二次形式。在整个平滑参数值范围内以及基于数据的平滑参数选择上对估计量进行了比较。我们表明,常用的方差估计器存在严重的缺点,即当平滑参数的选择很小时,会低估误差方差。一个简单但计算强度更高的替代方案没有这个缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Variance Estimators in Nonparametric Regression
SUMMARY We compare two estimators of error variance, both based on quadratic forms in the residuals about smoothing spline fits to data. The estimators are compared over the whole range of values of the smoothing parameter as well as for data-based choices of the smoothing parameter. We show that the commonly used estimator of variance has the serious drawback of underestimating the error variance for small choices of the smoothing parameter. This drawback is not shared by a simple, but more computationally intensive, alternative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信