{"title":"扩展操作员和Janowski与复杂的客户相似","authors":"Andra Manu","doi":"10.24193/subbmath.2023.2.07","DOIUrl":null,"url":null,"abstract":"\"In this paper, we obtain certain generalizations of some results from [13] and [14]. Let $\\Phi_{n, \\alpha, \\beta}$ be the extension operator introduced in \\cite{GrahamHamadaKohrSuffridge} and let $\\Phi_{n, Q}$ be the extension operator introduced in [7]. Let $a \\in \\C$, $b \\in \\R$ be such that $|1-a| < b \\leq {\\rm Re}\\ a$. We consider the Janowski classes $S^*(a,b, \\B)$ and $\\A S^*(a,b, \\B)$ with complex coefficients introduced in [16]. In the case $n=1$, we denote $S^*(a,b, \\mathbb{B}^1)$ by $S^*(a,b)$ and $\\A S^*(a,b, \\mathbb{B}^1)$ by $\\A S^*(a,b)$. We shall prove that the following preservation properties concerning the extension operator $\\Phi_{n, \\alpha, \\beta}$ hold: $\\Phi_{n, \\alpha, \\beta} (S^*(a,b)) \\subseteq S^*(a,b, \\B)$, $\\Phi_{n, \\alpha, \\beta} (\\A S^*(a,b)) \\subseteq \\A S^*(a,b, \\B)$. Also, we prove similar results for the extension operator $\\Phi_{n, Q}$: $$\\Phi_{n, Q}(S^*(a,b)) \\subseteq S^*(a,b, \\B),\\ \\Phi_{n, Q}(\\A S^*(a,b)) \\subseteq \\A S^*(a,b, \\B).$$ \"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension operators and Janowski starlikeness with complex coe cients\",\"authors\":\"Andra Manu\",\"doi\":\"10.24193/subbmath.2023.2.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper, we obtain certain generalizations of some results from [13] and [14]. Let $\\\\Phi_{n, \\\\alpha, \\\\beta}$ be the extension operator introduced in \\\\cite{GrahamHamadaKohrSuffridge} and let $\\\\Phi_{n, Q}$ be the extension operator introduced in [7]. Let $a \\\\in \\\\C$, $b \\\\in \\\\R$ be such that $|1-a| < b \\\\leq {\\\\rm Re}\\\\ a$. We consider the Janowski classes $S^*(a,b, \\\\B)$ and $\\\\A S^*(a,b, \\\\B)$ with complex coefficients introduced in [16]. In the case $n=1$, we denote $S^*(a,b, \\\\mathbb{B}^1)$ by $S^*(a,b)$ and $\\\\A S^*(a,b, \\\\mathbb{B}^1)$ by $\\\\A S^*(a,b)$. We shall prove that the following preservation properties concerning the extension operator $\\\\Phi_{n, \\\\alpha, \\\\beta}$ hold: $\\\\Phi_{n, \\\\alpha, \\\\beta} (S^*(a,b)) \\\\subseteq S^*(a,b, \\\\B)$, $\\\\Phi_{n, \\\\alpha, \\\\beta} (\\\\A S^*(a,b)) \\\\subseteq \\\\A S^*(a,b, \\\\B)$. Also, we prove similar results for the extension operator $\\\\Phi_{n, Q}$: $$\\\\Phi_{n, Q}(S^*(a,b)) \\\\subseteq S^*(a,b, \\\\B),\\\\ \\\\Phi_{n, Q}(\\\\A S^*(a,b)) \\\\subseteq \\\\A S^*(a,b, \\\\B).$$ \\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2023.2.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.2.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extension operators and Janowski starlikeness with complex coe cients
"In this paper, we obtain certain generalizations of some results from [13] and [14]. Let $\Phi_{n, \alpha, \beta}$ be the extension operator introduced in \cite{GrahamHamadaKohrSuffridge} and let $\Phi_{n, Q}$ be the extension operator introduced in [7]. Let $a \in \C$, $b \in \R$ be such that $|1-a| < b \leq {\rm Re}\ a$. We consider the Janowski classes $S^*(a,b, \B)$ and $\A S^*(a,b, \B)$ with complex coefficients introduced in [16]. In the case $n=1$, we denote $S^*(a,b, \mathbb{B}^1)$ by $S^*(a,b)$ and $\A S^*(a,b, \mathbb{B}^1)$ by $\A S^*(a,b)$. We shall prove that the following preservation properties concerning the extension operator $\Phi_{n, \alpha, \beta}$ hold: $\Phi_{n, \alpha, \beta} (S^*(a,b)) \subseteq S^*(a,b, \B)$, $\Phi_{n, \alpha, \beta} (\A S^*(a,b)) \subseteq \A S^*(a,b, \B)$. Also, we prove similar results for the extension operator $\Phi_{n, Q}$: $$\Phi_{n, Q}(S^*(a,b)) \subseteq S^*(a,b, \B),\ \Phi_{n, Q}(\A S^*(a,b)) \subseteq \A S^*(a,b, \B).$$ "