扩展操作员和Janowski与复杂的客户相似

Andra Manu
{"title":"扩展操作员和Janowski与复杂的客户相似","authors":"Andra Manu","doi":"10.24193/subbmath.2023.2.07","DOIUrl":null,"url":null,"abstract":"\"In this paper, we obtain certain generalizations of some results from [13] and [14]. Let $\\Phi_{n, \\alpha, \\beta}$ be the extension operator introduced in \\cite{GrahamHamadaKohrSuffridge} and let $\\Phi_{n, Q}$ be the extension operator introduced in [7]. Let $a \\in \\C$, $b \\in \\R$ be such that $|1-a| < b \\leq {\\rm Re}\\ a$. We consider the Janowski classes $S^*(a,b, \\B)$ and $\\A S^*(a,b, \\B)$ with complex coefficients introduced in [16]. In the case $n=1$, we denote $S^*(a,b, \\mathbb{B}^1)$ by $S^*(a,b)$ and $\\A S^*(a,b, \\mathbb{B}^1)$ by $\\A S^*(a,b)$. We shall prove that the following preservation properties concerning the extension operator $\\Phi_{n, \\alpha, \\beta}$ hold: $\\Phi_{n, \\alpha, \\beta} (S^*(a,b)) \\subseteq S^*(a,b, \\B)$, $\\Phi_{n, \\alpha, \\beta} (\\A S^*(a,b)) \\subseteq \\A S^*(a,b, \\B)$. Also, we prove similar results for the extension operator $\\Phi_{n, Q}$: $$\\Phi_{n, Q}(S^*(a,b)) \\subseteq S^*(a,b, \\B),\\ \\Phi_{n, Q}(\\A S^*(a,b)) \\subseteq \\A S^*(a,b, \\B).$$ \"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension operators and Janowski starlikeness with complex coe cients\",\"authors\":\"Andra Manu\",\"doi\":\"10.24193/subbmath.2023.2.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper, we obtain certain generalizations of some results from [13] and [14]. Let $\\\\Phi_{n, \\\\alpha, \\\\beta}$ be the extension operator introduced in \\\\cite{GrahamHamadaKohrSuffridge} and let $\\\\Phi_{n, Q}$ be the extension operator introduced in [7]. Let $a \\\\in \\\\C$, $b \\\\in \\\\R$ be such that $|1-a| < b \\\\leq {\\\\rm Re}\\\\ a$. We consider the Janowski classes $S^*(a,b, \\\\B)$ and $\\\\A S^*(a,b, \\\\B)$ with complex coefficients introduced in [16]. In the case $n=1$, we denote $S^*(a,b, \\\\mathbb{B}^1)$ by $S^*(a,b)$ and $\\\\A S^*(a,b, \\\\mathbb{B}^1)$ by $\\\\A S^*(a,b)$. We shall prove that the following preservation properties concerning the extension operator $\\\\Phi_{n, \\\\alpha, \\\\beta}$ hold: $\\\\Phi_{n, \\\\alpha, \\\\beta} (S^*(a,b)) \\\\subseteq S^*(a,b, \\\\B)$, $\\\\Phi_{n, \\\\alpha, \\\\beta} (\\\\A S^*(a,b)) \\\\subseteq \\\\A S^*(a,b, \\\\B)$. Also, we prove similar results for the extension operator $\\\\Phi_{n, Q}$: $$\\\\Phi_{n, Q}(S^*(a,b)) \\\\subseteq S^*(a,b, \\\\B),\\\\ \\\\Phi_{n, Q}(\\\\A S^*(a,b)) \\\\subseteq \\\\A S^*(a,b, \\\\B).$$ \\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2023.2.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.2.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对[13]和[14]的一些结果进行了一定的推广。设$\Phi_{n, \alpha, \beta}$为\cite{GrahamHamadaKohrSuffridge}中引入的扩展算子,$\Phi_{n, Q}$为[7]中引入的扩展算子。让$a \in \C$, $b \in \R$这样$|1-a| < b \leq {\rm Re}\ a$。我们考虑在[16]中引入的具有复系数的Janowski类$S^*(a,b, \B)$和$\A S^*(a,b, \B)$。对于$n=1$,我们用$S^*(a,b)$表示$S^*(a,b, \mathbb{B}^1)$,用$\A S^*(a,b)$表示$\A S^*(a,b, \mathbb{B}^1)$。我们将证明下列关于扩展算子$\Phi_{n, \alpha, \beta}$的保存性质成立:$\Phi_{n, \alpha, \beta} (S^*(a,b)) \subseteq S^*(a,b, \B)$, $\Phi_{n, \alpha, \beta} (\A S^*(a,b)) \subseteq \A S^*(a,b, \B)$。此外,我们还证明了扩展算子$\Phi_{n, Q}$: $$\Phi_{n, Q}(S^*(a,b)) \subseteq S^*(a,b, \B),\ \Phi_{n, Q}(\A S^*(a,b)) \subseteq \A S^*(a,b, \B).$$的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension operators and Janowski starlikeness with complex coe cients
"In this paper, we obtain certain generalizations of some results from [13] and [14]. Let $\Phi_{n, \alpha, \beta}$ be the extension operator introduced in \cite{GrahamHamadaKohrSuffridge} and let $\Phi_{n, Q}$ be the extension operator introduced in [7]. Let $a \in \C$, $b \in \R$ be such that $|1-a| < b \leq {\rm Re}\ a$. We consider the Janowski classes $S^*(a,b, \B)$ and $\A S^*(a,b, \B)$ with complex coefficients introduced in [16]. In the case $n=1$, we denote $S^*(a,b, \mathbb{B}^1)$ by $S^*(a,b)$ and $\A S^*(a,b, \mathbb{B}^1)$ by $\A S^*(a,b)$. We shall prove that the following preservation properties concerning the extension operator $\Phi_{n, \alpha, \beta}$ hold: $\Phi_{n, \alpha, \beta} (S^*(a,b)) \subseteq S^*(a,b, \B)$, $\Phi_{n, \alpha, \beta} (\A S^*(a,b)) \subseteq \A S^*(a,b, \B)$. Also, we prove similar results for the extension operator $\Phi_{n, Q}$: $$\Phi_{n, Q}(S^*(a,b)) \subseteq S^*(a,b, \B),\ \Phi_{n, Q}(\A S^*(a,b)) \subseteq \A S^*(a,b, \B).$$ "
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
31 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信