新型光辅助降解孔雀石绿染料双金属氧化物催化剂的合成、表征及应用

K. Ameta, Neema Papnai, R. Ameta
{"title":"新型光辅助降解孔雀石绿染料双金属氧化物催化剂的合成、表征及应用","authors":"K. Ameta, Neema Papnai, R. Ameta","doi":"10.1155/2014/480107","DOIUrl":null,"url":null,"abstract":"This work reports a simple, novel, and cost effective synthesis of nanobimetal oxide catalyst using cerium and cadmium nitrates as metal precursors. The cerium-cadmium oxide nanophotocatalyst was synthesized by coprecipitation method and characterized by X-ray powder diffraction method to analyze the particle size. XRD study reveals a high degree of crystallinity and 28.43 nm particle size. The photocatalytic efficiency of the synthesized nanobimetal catalyst was examined by using it for the photocatalytic degradation of malachite green dye. Experiments were conducted to study the effect of various parameters, such as the pH of the dye solution, concentration of dye, amount of catalyst, and light intensity on the rate of dye degradation. The progress of the dye degradation was monitored spectrophotometrically by taking the optical density of the dye solution at regular intervals. Experimental results indicate that the dye degrades best at pH 8.0 with light intensity 600 Wm−2 and catalyst loading 0.03 g/50 mL of dye solution. The rate constant for the reaction was 7.67 × 10−4 s−1.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"17 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Synthesis, Characterization, and Use of Novel Bimetal Oxide Catalyst for Photoassisted Degradation of Malachite Green Dye\",\"authors\":\"K. Ameta, Neema Papnai, R. Ameta\",\"doi\":\"10.1155/2014/480107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports a simple, novel, and cost effective synthesis of nanobimetal oxide catalyst using cerium and cadmium nitrates as metal precursors. The cerium-cadmium oxide nanophotocatalyst was synthesized by coprecipitation method and characterized by X-ray powder diffraction method to analyze the particle size. XRD study reveals a high degree of crystallinity and 28.43 nm particle size. The photocatalytic efficiency of the synthesized nanobimetal catalyst was examined by using it for the photocatalytic degradation of malachite green dye. Experiments were conducted to study the effect of various parameters, such as the pH of the dye solution, concentration of dye, amount of catalyst, and light intensity on the rate of dye degradation. The progress of the dye degradation was monitored spectrophotometrically by taking the optical density of the dye solution at regular intervals. Experimental results indicate that the dye degrades best at pH 8.0 with light intensity 600 Wm−2 and catalyst loading 0.03 g/50 mL of dye solution. The rate constant for the reaction was 7.67 × 10−4 s−1.\",\"PeriodicalId\":17611,\"journal\":{\"name\":\"Journal: Materials\",\"volume\":\"17 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal: Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/480107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/480107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文报道了一种简单、新颖、经济有效的纳米金属氧化物催化剂的合成方法,该方法使用硝酸铈和硝酸镉作为金属前体。采用共沉淀法合成了氧化铈镉纳米光催化剂,并用x射线粉末衍射法对其粒度进行了表征。XRD分析表明,该材料结晶度高,粒径28.43 nm。将合成的纳米金属催化剂用于光催化降解孔雀石绿染料,考察了其光催化效率。实验研究了染料溶液pH、染料浓度、催化剂用量、光照强度等参数对染料降解速率的影响。通过定期测定染料溶液的光密度,用分光光度法监测染料降解过程。实验结果表明,在pH 8.0、光强600 Wm−2、催化剂用量0.03 g/50 mL的条件下,染料降解效果最好。反应速率常数为7.67 × 10−4 s−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis, Characterization, and Use of Novel Bimetal Oxide Catalyst for Photoassisted Degradation of Malachite Green Dye
This work reports a simple, novel, and cost effective synthesis of nanobimetal oxide catalyst using cerium and cadmium nitrates as metal precursors. The cerium-cadmium oxide nanophotocatalyst was synthesized by coprecipitation method and characterized by X-ray powder diffraction method to analyze the particle size. XRD study reveals a high degree of crystallinity and 28.43 nm particle size. The photocatalytic efficiency of the synthesized nanobimetal catalyst was examined by using it for the photocatalytic degradation of malachite green dye. Experiments were conducted to study the effect of various parameters, such as the pH of the dye solution, concentration of dye, amount of catalyst, and light intensity on the rate of dye degradation. The progress of the dye degradation was monitored spectrophotometrically by taking the optical density of the dye solution at regular intervals. Experimental results indicate that the dye degrades best at pH 8.0 with light intensity 600 Wm−2 and catalyst loading 0.03 g/50 mL of dye solution. The rate constant for the reaction was 7.67 × 10−4 s−1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信