E. Stavrou, M. Bagge-Hansen, J. Hammons, M. Nielsen, B. Steele, Penghao Xiao, M. Kroonblawd, Matthew D. Nelms, W. L. Shaw, Will P. Bassett, S. Bastea, L. Lauderbach, R. Hodgin, Nicholas A. Perez-Marty, Saransh Singh, P. Das, Yuelin Li, Adam W Schuman, N. Sinclair, K. Fezzaa, A. Deriy, L. Leininger, T. Willey
{"title":"爆轰诱导石墨向六边形金刚石的转变","authors":"E. Stavrou, M. Bagge-Hansen, J. Hammons, M. Nielsen, B. Steele, Penghao Xiao, M. Kroonblawd, Matthew D. Nelms, W. L. Shaw, Will P. Bassett, S. Bastea, L. Lauderbach, R. Hodgin, Nicholas A. Perez-Marty, Saransh Singh, P. Das, Yuelin Li, Adam W Schuman, N. Sinclair, K. Fezzaa, A. Deriy, L. Leininger, T. Willey","doi":"10.1103/PHYSREVB.102.104116","DOIUrl":null,"url":null,"abstract":"We explore the structural evolution of highly oriented pyrolytic graphite (HOPG) under detonation-induced shock conditions using in situ synchrotron x-ray diffraction in the ns timescale. We observe the formation of hexagonal diamond (lonsdaleite) at pressures above 50 GPa, in qualitative agreement with recent gas gun experiments. First-principles density functional calculations reveal that under uniaxial compression, the energy barrier for the transition toward hexagonal diamond is lower than that for cubic diamond. Finally, no indication of cubic diamond formation was observed up to $g70$ GPa.","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Detonation-induced transformation of graphite to hexagonal diamond\",\"authors\":\"E. Stavrou, M. Bagge-Hansen, J. Hammons, M. Nielsen, B. Steele, Penghao Xiao, M. Kroonblawd, Matthew D. Nelms, W. L. Shaw, Will P. Bassett, S. Bastea, L. Lauderbach, R. Hodgin, Nicholas A. Perez-Marty, Saransh Singh, P. Das, Yuelin Li, Adam W Schuman, N. Sinclair, K. Fezzaa, A. Deriy, L. Leininger, T. Willey\",\"doi\":\"10.1103/PHYSREVB.102.104116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the structural evolution of highly oriented pyrolytic graphite (HOPG) under detonation-induced shock conditions using in situ synchrotron x-ray diffraction in the ns timescale. We observe the formation of hexagonal diamond (lonsdaleite) at pressures above 50 GPa, in qualitative agreement with recent gas gun experiments. First-principles density functional calculations reveal that under uniaxial compression, the energy barrier for the transition toward hexagonal diamond is lower than that for cubic diamond. Finally, no indication of cubic diamond formation was observed up to $g70$ GPa.\",\"PeriodicalId\":9375,\"journal\":{\"name\":\"Bulletin of the American Physical Society\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Physical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVB.102.104116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Physical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.102.104116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detonation-induced transformation of graphite to hexagonal diamond
We explore the structural evolution of highly oriented pyrolytic graphite (HOPG) under detonation-induced shock conditions using in situ synchrotron x-ray diffraction in the ns timescale. We observe the formation of hexagonal diamond (lonsdaleite) at pressures above 50 GPa, in qualitative agreement with recent gas gun experiments. First-principles density functional calculations reveal that under uniaxial compression, the energy barrier for the transition toward hexagonal diamond is lower than that for cubic diamond. Finally, no indication of cubic diamond formation was observed up to $g70$ GPa.