基于支持向量机的非平稳信号分类

Arthur Gretton, Manuel Davy, A. Doucet, P. Rayner
{"title":"基于支持向量机的非平稳信号分类","authors":"Arthur Gretton, Manuel Davy, A. Doucet, P. Rayner","doi":"10.1109/SSP.2001.955283","DOIUrl":null,"url":null,"abstract":"We demonstrate the use of support vector (SV) techniques for the binary classification of nonstationary sinusoidal signals with quadratic phase. We briefly describe the theory underpinning SV classification, and introduce Cohen's group time-frequency representation, which is used to process the nonstationary signals so as to define the classifier input space. We show that the SV classifier outperforms alternative classification methods on this processed data.","PeriodicalId":70952,"journal":{"name":"信号处理","volume":"128 1","pages":"305-308"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Nonstationary signal classification using support vector machines\",\"authors\":\"Arthur Gretton, Manuel Davy, A. Doucet, P. Rayner\",\"doi\":\"10.1109/SSP.2001.955283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the use of support vector (SV) techniques for the binary classification of nonstationary sinusoidal signals with quadratic phase. We briefly describe the theory underpinning SV classification, and introduce Cohen's group time-frequency representation, which is used to process the nonstationary signals so as to define the classifier input space. We show that the SV classifier outperforms alternative classification methods on this processed data.\",\"PeriodicalId\":70952,\"journal\":{\"name\":\"信号处理\",\"volume\":\"128 1\",\"pages\":\"305-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信号处理\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2001.955283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SSP.2001.955283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们演示了使用支持向量(SV)技术对二次相位的非平稳正弦信号进行二值分类。我们简要描述了SV分类的理论基础,并引入了Cohen的群时频表示,该表示用于处理非平稳信号以定义分类器输入空间。我们证明了SV分类器在处理过的数据上优于其他分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonstationary signal classification using support vector machines
We demonstrate the use of support vector (SV) techniques for the binary classification of nonstationary sinusoidal signals with quadratic phase. We briefly describe the theory underpinning SV classification, and introduce Cohen's group time-frequency representation, which is used to process the nonstationary signals so as to define the classifier input space. We show that the SV classifier outperforms alternative classification methods on this processed data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5812
期刊介绍: Journal of Signal Processing is an academic journal supervised by China Association for Science and Technology and sponsored by China Institute of Electronics. The journal is an academic journal that reflects the latest research results and technological progress in the field of signal processing and related disciplines. It covers academic papers and review articles on new theories, new ideas, and new technologies in the field of signal processing. The journal aims to provide a platform for academic exchanges for scientific researchers and engineering and technical personnel engaged in basic research and applied research in signal processing, thereby promoting the development of information science and technology. At present, the journal has been included in the three major domestic core journal databases "China Science Citation Database (CSCD), China Science and Technology Core Journals (CSTPCD), Chinese Core Journals Overview" and Coaj. It is also included in many foreign databases such as Scopus, CSA, EBSCO host, INSPEC, JST, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信