基于机器学习的网络异常检测:使用Apache Spark的随机森林方法

Hesamaldin Hajialian, Cristian Toma
{"title":"基于机器学习的网络异常检测:使用Apache Spark的随机森林方法","authors":"Hesamaldin Hajialian, Cristian Toma","doi":"10.12948/issn14531305/22.4.2018.08","DOIUrl":null,"url":null,"abstract":"Nowadays the network security is a crucial issue and traditional intrusion detection systems are not a sufficient way. Hence the intelligent detection systems should have a major role in network security by taking into consideration to process the network big data and predict the anomalies behavior as fast as possible. In this paper, we implemented a well-known supervised algorithm Random Forest Classifier with Apache Spark on NSL-KDD dataset provided by the University of New Brunswick with the accuracy of 78.69% and 35.2% false negative ratio. Empirical results show this approach is well in order to use for intrusion detection system as well as we seeking the best number of trees to be used on Random Forest Classifier for getting higher accuracy and lower cost for the intrusion detection system.","PeriodicalId":53248,"journal":{"name":"Informatica economica","volume":"27 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Network Anomaly Detection by Means of Machine Learning: Random Forest Approach with Apache Spark\",\"authors\":\"Hesamaldin Hajialian, Cristian Toma\",\"doi\":\"10.12948/issn14531305/22.4.2018.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays the network security is a crucial issue and traditional intrusion detection systems are not a sufficient way. Hence the intelligent detection systems should have a major role in network security by taking into consideration to process the network big data and predict the anomalies behavior as fast as possible. In this paper, we implemented a well-known supervised algorithm Random Forest Classifier with Apache Spark on NSL-KDD dataset provided by the University of New Brunswick with the accuracy of 78.69% and 35.2% false negative ratio. Empirical results show this approach is well in order to use for intrusion detection system as well as we seeking the best number of trees to be used on Random Forest Classifier for getting higher accuracy and lower cost for the intrusion detection system.\",\"PeriodicalId\":53248,\"journal\":{\"name\":\"Informatica economica\",\"volume\":\"27 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatica economica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12948/issn14531305/22.4.2018.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica economica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12948/issn14531305/22.4.2018.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当前,网络安全已成为一个重要的问题,传统的入侵检测系统已不能满足要求。因此,考虑到如何处理网络大数据并尽快预测异常行为,智能检测系统应该在网络安全中发挥重要作用。本文利用Apache Spark在New Brunswick大学提供的NSL-KDD数据集上实现了一种著名的监督算法Random Forest Classifier,准确率为78.69%,假阴性率为35.2%。实验结果表明,该方法可以很好地用于入侵检测系统,同时我们也在寻找随机森林分类器上使用的最佳树数,以获得更高的准确率和更低的入侵检测系统成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Anomaly Detection by Means of Machine Learning: Random Forest Approach with Apache Spark
Nowadays the network security is a crucial issue and traditional intrusion detection systems are not a sufficient way. Hence the intelligent detection systems should have a major role in network security by taking into consideration to process the network big data and predict the anomalies behavior as fast as possible. In this paper, we implemented a well-known supervised algorithm Random Forest Classifier with Apache Spark on NSL-KDD dataset provided by the University of New Brunswick with the accuracy of 78.69% and 35.2% false negative ratio. Empirical results show this approach is well in order to use for intrusion detection system as well as we seeking the best number of trees to be used on Random Forest Classifier for getting higher accuracy and lower cost for the intrusion detection system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信