3流形的成纤维定理

IF 0.1 Q4 MATHEMATICS
Jordan Sahattchieve
{"title":"3流形的成纤维定理","authors":"Jordan Sahattchieve","doi":"10.46298/jgcc.2021.13.2.7072","DOIUrl":null,"url":null,"abstract":"We generalize a result of Moon on the fibering of certain 3-manifolds over\nthe circle. Our main theorem is the following: Let $M$ be a closed 3-manifold.\nSuppose that $G=\\pi_1(M)$ contains a finitely generated group $U$ of infinite\nindex in $G$ which contains a non-trivial subnormal subgroup $N\\neq \\mathbb{Z}$\nof $G$, and suppose that $N$ has a composition series of length $n$ in which at\nleast $n-1$ terms are finitely generated. Suppose that $N$ intersects\nnontrivially the fundamental groups of the splitting tori given by the\nGeometrization Theorem and that the intersections of $N$ with the fundamental\ngroups of the geometric pieces are non-trivial and not isomorphic to\n$\\mathbb{Z}$. Then, $M$ has a finite cover which is a bundle over $\\mathbb{S}$\nwith fiber a compact surface $F$ such that $\\pi_1(F)$ and $U$ are\ncommensurable.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fibering theorem for 3-manifolds\",\"authors\":\"Jordan Sahattchieve\",\"doi\":\"10.46298/jgcc.2021.13.2.7072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize a result of Moon on the fibering of certain 3-manifolds over\\nthe circle. Our main theorem is the following: Let $M$ be a closed 3-manifold.\\nSuppose that $G=\\\\pi_1(M)$ contains a finitely generated group $U$ of infinite\\nindex in $G$ which contains a non-trivial subnormal subgroup $N\\\\neq \\\\mathbb{Z}$\\nof $G$, and suppose that $N$ has a composition series of length $n$ in which at\\nleast $n-1$ terms are finitely generated. Suppose that $N$ intersects\\nnontrivially the fundamental groups of the splitting tori given by the\\nGeometrization Theorem and that the intersections of $N$ with the fundamental\\ngroups of the geometric pieces are non-trivial and not isomorphic to\\n$\\\\mathbb{Z}$. Then, $M$ has a finite cover which is a bundle over $\\\\mathbb{S}$\\nwith fiber a compact surface $F$ such that $\\\\pi_1(F)$ and $U$ are\\ncommensurable.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jgcc.2021.13.2.7072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2021.13.2.7072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们推广了月亮关于某些3-流形在圆上的纤维化的结果。我们的主要定理如下:设$M$是一个封闭的3流形。假设$G=\pi_1(M)$在$G$中包含一个有限生成的infiniteindex群$U$,其中包含一个$G$的非平凡次正规子群$N\neq \mathbb{Z}$,并假设$N$有一个长度为$n$的组合序列,其中至少有$n-1$个项是有限生成的。假设$N$与由几何化定理给出的分裂环面的基群非平凡相交,并且$N$与几何块的基群的相交非平凡且与$\mathbb{Z}$不同构。然后,$M$有一个有限的覆盖物,它是一束在$\mathbb{S}$上的纤维,一个紧凑的表面$F$,这样$\pi_1(F)$和$U$是可通约的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fibering theorem for 3-manifolds
We generalize a result of Moon on the fibering of certain 3-manifolds over the circle. Our main theorem is the following: Let $M$ be a closed 3-manifold. Suppose that $G=\pi_1(M)$ contains a finitely generated group $U$ of infinite index in $G$ which contains a non-trivial subnormal subgroup $N\neq \mathbb{Z}$ of $G$, and suppose that $N$ has a composition series of length $n$ in which at least $n-1$ terms are finitely generated. Suppose that $N$ intersects nontrivially the fundamental groups of the splitting tori given by the Geometrization Theorem and that the intersections of $N$ with the fundamental groups of the geometric pieces are non-trivial and not isomorphic to $\mathbb{Z}$. Then, $M$ has a finite cover which is a bundle over $\mathbb{S}$ with fiber a compact surface $F$ such that $\pi_1(F)$ and $U$ are commensurable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信