{"title":"二肽基肽酶IV抑制改善高脂肪饮食喂养大鼠葡萄糖耐量受损:使用酶活性缺乏的Fischer 344大鼠亚株的研究","authors":"H. Mitani, M. Takimoto, T. Hughes, M. Kimura","doi":"10.1254/JJP.88.442","DOIUrl":null,"url":null,"abstract":"This study was performed to determine the effects of a high-fat diet on glucose metabolism after an oral glucose challenge in high-fat diet-fed dipeptidyl peptidase IV (DPP-IV) positive (+) and deficient (-) Fischer 344 (F344) rats and the effects of novel DPP-IV inhibitor NVP-DPP728 (1-[2-[(5-cyanopyridin-2-yl)amino]ethylamino]acetyl-2-cyano-(S)-pyrrolidine monohydrochloride salt) on glucose tolerance in high-fat diet-fed F344 rats. In DPP-IV(+) rats, a high-fat diet load caused impaired glucose tolerance, such as increases of plasma insulin and blood glucose concentrations after oral glucose challenge, compared with a standard chow-fed group. In contrast, no marked change in glucose tolerance was induced by the high-fat diet in DPP-IV(-) rats. Blood glucose concentrations in DPP-IV(-) rats after glucose challenge were significantly lower than in DPP-IV(+) rats under high-fat diet load conditions. In standard chow and high-fat diet-fed DPP-IV(+) rats, NVP-DPP728 significantly suppressed glucose excursions after glucose challenge by inhibiting the plasma DPP-IV activity, associated with the stimulation of early insulin secretion. NVP-DPP728 did not affect glucose tolerance in DPP-IV(-) rats under both conditions. These results indicate that the amelioration of glucose tolerance by NVP-DPP728 in DPP-IV(+) rats was directly due to the inhibition of plasma DPP-IV activity, which might be via the subsequent increase in endogenous incretin action.","PeriodicalId":14750,"journal":{"name":"Japanese journal of pharmacology","volume":"32 1","pages":"442-50"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Dipeptidyl peptidase IV inhibition improves impaired glucose tolerance in high-fat diet-fed rats: study using a Fischer 344 rat substrain deficient in its enzyme activity.\",\"authors\":\"H. Mitani, M. Takimoto, T. Hughes, M. Kimura\",\"doi\":\"10.1254/JJP.88.442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was performed to determine the effects of a high-fat diet on glucose metabolism after an oral glucose challenge in high-fat diet-fed dipeptidyl peptidase IV (DPP-IV) positive (+) and deficient (-) Fischer 344 (F344) rats and the effects of novel DPP-IV inhibitor NVP-DPP728 (1-[2-[(5-cyanopyridin-2-yl)amino]ethylamino]acetyl-2-cyano-(S)-pyrrolidine monohydrochloride salt) on glucose tolerance in high-fat diet-fed F344 rats. In DPP-IV(+) rats, a high-fat diet load caused impaired glucose tolerance, such as increases of plasma insulin and blood glucose concentrations after oral glucose challenge, compared with a standard chow-fed group. In contrast, no marked change in glucose tolerance was induced by the high-fat diet in DPP-IV(-) rats. Blood glucose concentrations in DPP-IV(-) rats after glucose challenge were significantly lower than in DPP-IV(+) rats under high-fat diet load conditions. In standard chow and high-fat diet-fed DPP-IV(+) rats, NVP-DPP728 significantly suppressed glucose excursions after glucose challenge by inhibiting the plasma DPP-IV activity, associated with the stimulation of early insulin secretion. NVP-DPP728 did not affect glucose tolerance in DPP-IV(-) rats under both conditions. These results indicate that the amelioration of glucose tolerance by NVP-DPP728 in DPP-IV(+) rats was directly due to the inhibition of plasma DPP-IV activity, which might be via the subsequent increase in endogenous incretin action.\",\"PeriodicalId\":14750,\"journal\":{\"name\":\"Japanese journal of pharmacology\",\"volume\":\"32 1\",\"pages\":\"442-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese journal of pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1254/JJP.88.442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese journal of pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/JJP.88.442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dipeptidyl peptidase IV inhibition improves impaired glucose tolerance in high-fat diet-fed rats: study using a Fischer 344 rat substrain deficient in its enzyme activity.
This study was performed to determine the effects of a high-fat diet on glucose metabolism after an oral glucose challenge in high-fat diet-fed dipeptidyl peptidase IV (DPP-IV) positive (+) and deficient (-) Fischer 344 (F344) rats and the effects of novel DPP-IV inhibitor NVP-DPP728 (1-[2-[(5-cyanopyridin-2-yl)amino]ethylamino]acetyl-2-cyano-(S)-pyrrolidine monohydrochloride salt) on glucose tolerance in high-fat diet-fed F344 rats. In DPP-IV(+) rats, a high-fat diet load caused impaired glucose tolerance, such as increases of plasma insulin and blood glucose concentrations after oral glucose challenge, compared with a standard chow-fed group. In contrast, no marked change in glucose tolerance was induced by the high-fat diet in DPP-IV(-) rats. Blood glucose concentrations in DPP-IV(-) rats after glucose challenge were significantly lower than in DPP-IV(+) rats under high-fat diet load conditions. In standard chow and high-fat diet-fed DPP-IV(+) rats, NVP-DPP728 significantly suppressed glucose excursions after glucose challenge by inhibiting the plasma DPP-IV activity, associated with the stimulation of early insulin secretion. NVP-DPP728 did not affect glucose tolerance in DPP-IV(-) rats under both conditions. These results indicate that the amelioration of glucose tolerance by NVP-DPP728 in DPP-IV(+) rats was directly due to the inhibition of plasma DPP-IV activity, which might be via the subsequent increase in endogenous incretin action.