用连续模定义的可微函数类上的Abel-Poisson积分的逼近性质

IF 1 Q1 MATHEMATICS
T. Stepaniuk, Yu. I. Kharkevych
{"title":"用连续模定义的可微函数类上的Abel-Poisson积分的逼近性质","authors":"T. Stepaniuk, Yu. I. Kharkevych","doi":"10.15330/cmp.15.1.286-294","DOIUrl":null,"url":null,"abstract":"Being the natural apparatus of the periodic functions approximation, the partial Fourier sums are not uniformly convergent over the entire space of the continuous functions. This fact stimulated the search for ways to construct sequences of polynomials that would converge uniformly on the entire space. The matrix method of Fourier series summation is one of the most common methods. Many results on the approximation of the classes of differentiated functions have been obtained for methods generated by triangular infinite matrices. The set of approximating linear methods can be extended by the process of summation of Fourier series, when instead of an infinite triangular matrix one considers the set $\\Lambda=\\{\\lambda_{\\delta}(k)\\}$ of functions of the natural argument depending on the real parameter $\\delta$. The paper deals with the problem of approximation in the uniform metric of $W^{1}H_{\\omega}$ classes using one of the classical linear summation methods for Fourier series given by a set of functions of a natural argument, namely, using the Abel-Poisson integral. At the same time, emphasis is placed on the study of the asymptotic behavior of the exact upper limits of the deviations of the Abel-Poisson integrals from the functions of the mentioned class.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Approximation properties of Abel-Poisson integrals on the classes of differentiable functions, defined by means of modulus of continuity\",\"authors\":\"T. Stepaniuk, Yu. I. Kharkevych\",\"doi\":\"10.15330/cmp.15.1.286-294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Being the natural apparatus of the periodic functions approximation, the partial Fourier sums are not uniformly convergent over the entire space of the continuous functions. This fact stimulated the search for ways to construct sequences of polynomials that would converge uniformly on the entire space. The matrix method of Fourier series summation is one of the most common methods. Many results on the approximation of the classes of differentiated functions have been obtained for methods generated by triangular infinite matrices. The set of approximating linear methods can be extended by the process of summation of Fourier series, when instead of an infinite triangular matrix one considers the set $\\\\Lambda=\\\\{\\\\lambda_{\\\\delta}(k)\\\\}$ of functions of the natural argument depending on the real parameter $\\\\delta$. The paper deals with the problem of approximation in the uniform metric of $W^{1}H_{\\\\omega}$ classes using one of the classical linear summation methods for Fourier series given by a set of functions of a natural argument, namely, using the Abel-Poisson integral. At the same time, emphasis is placed on the study of the asymptotic behavior of the exact upper limits of the deviations of the Abel-Poisson integrals from the functions of the mentioned class.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.1.286-294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.286-294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

作为周期函数逼近的天然工具,部分傅里叶和在连续函数的整个空间上不是一致收敛的。这一事实刺激了人们寻找构造多项式序列的方法,这些多项式序列将在整个空间上均匀收敛。傅里叶级数求和的矩阵法是最常用的方法之一。对于由无穷三角形矩阵生成的方法,已经得到了许多关于微分函数类逼近的结果。当考虑依赖于实参数$\delta$的自然参数函数集$\Lambda=\{\lambda_{\delta}(k)\}$而不是无穷三角形矩阵时,可以通过傅里叶级数的求和过程来扩展近似线性方法集。本文用一组自然参数函数的傅里叶级数的经典线性求和方法,即Abel-Poisson积分,研究了$W^{1}H_{\omega}$类的一致度规的逼近问题。同时,重点研究了该类函数的Abel-Poisson积分的偏差上界的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation properties of Abel-Poisson integrals on the classes of differentiable functions, defined by means of modulus of continuity
Being the natural apparatus of the periodic functions approximation, the partial Fourier sums are not uniformly convergent over the entire space of the continuous functions. This fact stimulated the search for ways to construct sequences of polynomials that would converge uniformly on the entire space. The matrix method of Fourier series summation is one of the most common methods. Many results on the approximation of the classes of differentiated functions have been obtained for methods generated by triangular infinite matrices. The set of approximating linear methods can be extended by the process of summation of Fourier series, when instead of an infinite triangular matrix one considers the set $\Lambda=\{\lambda_{\delta}(k)\}$ of functions of the natural argument depending on the real parameter $\delta$. The paper deals with the problem of approximation in the uniform metric of $W^{1}H_{\omega}$ classes using one of the classical linear summation methods for Fourier series given by a set of functions of a natural argument, namely, using the Abel-Poisson integral. At the same time, emphasis is placed on the study of the asymptotic behavior of the exact upper limits of the deviations of the Abel-Poisson integrals from the functions of the mentioned class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信