零质量通量条件下化学反应和活化能对卡罗纳米液体通过可渗透表面的影响

IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY
G. Ramesh, K. G. Kumar, Ali J. Chamkha, R. Gorla
{"title":"零质量通量条件下化学反应和活化能对卡罗纳米液体通过可渗透表面的影响","authors":"G. Ramesh, K. G. Kumar, Ali J. Chamkha, R. Gorla","doi":"10.1177/2397791419881090","DOIUrl":null,"url":null,"abstract":"Arrhenius condition has been broadly utilized as a model of the temperature impact on the rate compound responses and organic procedure. Hence, our aim of this article is to examine the effects of chemical reaction and activation energy on a Carreau nanoliquid in a permeable surface. For thermal and mass transport curiosities, the cumulative upgrade of convective type condition and zero mass transition have been considered. The overseeing sets of partial differential equations are rendered into coupled nonlinear ordinary differential equations. The arrangement of the subsequent ordinary differential equations is acquired with the assistance of the Runge-Kutta-Fehlberg-fourth-fifth order (RKF-45) procedure. The influence of relevant parameters and physical quantities is investigated. The results show that the presence of reaction rate and energy activation term decelerates the temperature and concentration gradients.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"22 1","pages":"47 - 57"},"PeriodicalIF":4.2000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effects of chemical reaction and activation energy on a Carreau nanoliquid past a permeable surface under zero mass flux conditions\",\"authors\":\"G. Ramesh, K. G. Kumar, Ali J. Chamkha, R. Gorla\",\"doi\":\"10.1177/2397791419881090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arrhenius condition has been broadly utilized as a model of the temperature impact on the rate compound responses and organic procedure. Hence, our aim of this article is to examine the effects of chemical reaction and activation energy on a Carreau nanoliquid in a permeable surface. For thermal and mass transport curiosities, the cumulative upgrade of convective type condition and zero mass transition have been considered. The overseeing sets of partial differential equations are rendered into coupled nonlinear ordinary differential equations. The arrangement of the subsequent ordinary differential equations is acquired with the assistance of the Runge-Kutta-Fehlberg-fourth-fifth order (RKF-45) procedure. The influence of relevant parameters and physical quantities is investigated. The results show that the presence of reaction rate and energy activation term decelerates the temperature and concentration gradients.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":\"22 1\",\"pages\":\"47 - 57\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2397791419881090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791419881090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

Arrhenius条件已被广泛用作温度对速率、化合物反应和有机过程影响的模型。因此,我们这篇文章的目的是研究化学反应和活化能对可渗透表面上的卡罗纳米液体的影响。对于热输运和质量输运好奇心,考虑了对流型条件的累积升级和零质量转变。将偏微分方程的监督集转化为耦合的非线性常微分方程。利用runge - kutta - fehlberg -4 - 5阶(RKF-45)程序,得到了后续常微分方程的排布。研究了相关参数和物理量的影响。结果表明,反应速率和能量激活项的存在减缓了温度梯度和浓度梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of chemical reaction and activation energy on a Carreau nanoliquid past a permeable surface under zero mass flux conditions
Arrhenius condition has been broadly utilized as a model of the temperature impact on the rate compound responses and organic procedure. Hence, our aim of this article is to examine the effects of chemical reaction and activation energy on a Carreau nanoliquid in a permeable surface. For thermal and mass transport curiosities, the cumulative upgrade of convective type condition and zero mass transition have been considered. The overseeing sets of partial differential equations are rendered into coupled nonlinear ordinary differential equations. The arrangement of the subsequent ordinary differential equations is acquired with the assistance of the Runge-Kutta-Fehlberg-fourth-fifth order (RKF-45) procedure. The influence of relevant parameters and physical quantities is investigated. The results show that the presence of reaction rate and energy activation term decelerates the temperature and concentration gradients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信