{"title":"一种新型防漂移喷嘴的仿真与实验","authors":"W. Deng, C. Zhao, L. Chen, R. Zhang","doi":"10.1017/S2040470017001340","DOIUrl":null,"url":null,"abstract":"This paper reports an investigation of the relationship between spray characteristics and a nozzles’ internal structure to reveal the working mechanism of anti-drift spray nozzles. Three important structural factors were taken into account, the diameter of the inner chamber, the angle of V-shaped slot and the relative kerf depth. Three-dimensional models of the fan nozzles were set up using Solidworks software and the corresponding real nozzles were produced using high-precision 3-D printer. The flow fields inside the nozzles were simulated using the software FLUENT. By comparing the flow fields inside and outside the nozzles under the conditions of the same inner structural parameter, the relationships between spraying flow characteristics and different structural parameters was made clear, and provides a reference for optimal design of anti-drift spray nozzles.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"46 1","pages":"837-841"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and Experiment of a Designed Anti-Drift Spray Nozzle\",\"authors\":\"W. Deng, C. Zhao, L. Chen, R. Zhang\",\"doi\":\"10.1017/S2040470017001340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports an investigation of the relationship between spray characteristics and a nozzles’ internal structure to reveal the working mechanism of anti-drift spray nozzles. Three important structural factors were taken into account, the diameter of the inner chamber, the angle of V-shaped slot and the relative kerf depth. Three-dimensional models of the fan nozzles were set up using Solidworks software and the corresponding real nozzles were produced using high-precision 3-D printer. The flow fields inside the nozzles were simulated using the software FLUENT. By comparing the flow fields inside and outside the nozzles under the conditions of the same inner structural parameter, the relationships between spraying flow characteristics and different structural parameters was made clear, and provides a reference for optimal design of anti-drift spray nozzles.\",\"PeriodicalId\":7228,\"journal\":{\"name\":\"Advances in Animal Biosciences\",\"volume\":\"46 1\",\"pages\":\"837-841\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Animal Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S2040470017001340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Animal Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2040470017001340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation and Experiment of a Designed Anti-Drift Spray Nozzle
This paper reports an investigation of the relationship between spray characteristics and a nozzles’ internal structure to reveal the working mechanism of anti-drift spray nozzles. Three important structural factors were taken into account, the diameter of the inner chamber, the angle of V-shaped slot and the relative kerf depth. Three-dimensional models of the fan nozzles were set up using Solidworks software and the corresponding real nozzles were produced using high-precision 3-D printer. The flow fields inside the nozzles were simulated using the software FLUENT. By comparing the flow fields inside and outside the nozzles under the conditions of the same inner structural parameter, the relationships between spraying flow characteristics and different structural parameters was made clear, and provides a reference for optimal design of anti-drift spray nozzles.