基于gpgpu的混合DLS定价方法

IF 0.3 Q4 MATHEMATICS, APPLIED
Yeochang Yoon, Yonsik Kim, Hyeong‐Ohk Bae
{"title":"基于gpgpu的混合DLS定价方法","authors":"Yeochang Yoon, Yonsik Kim, Hyeong‐Ohk Bae","doi":"10.12941/JKSIAM.2016.20.277","DOIUrl":null,"url":null,"abstract":"We develop an efficient numerical method for pricing the Derivative Linked Securities (DLS). The payoff structure of the hybrid DLS consists with a standard 2-Star step-down type ELS and the range accrual product which depends on the number of days in the coupon period that the index stay within the pre-determined range. We assume that the 2-dimensional Geometric Brownian Motion (GBM) as the model of two equities and a no-arbitrage interest model (One-factor Hull and White interest rate model) as a model for the interest rate. In this study, we employ the Monte Carlo simulation method with the Compute Unified Device Architecture (CUDA) parallel computing as the General Purpose computing on Graphic Processing Unit (GPGPU) technology for fast and efficient numerical valuation of DLS. Comparing the Monte Carlo method with single CPU computation or MPI implementation, the result of Monte Carlo simulation with CUDA parallel computing produces higher performance.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"99 1","pages":"277-293"},"PeriodicalIF":0.3000,"publicationDate":"2016-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PRICING METHOD OF HYBRID DLS WITH GPGPU\",\"authors\":\"Yeochang Yoon, Yonsik Kim, Hyeong‐Ohk Bae\",\"doi\":\"10.12941/JKSIAM.2016.20.277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an efficient numerical method for pricing the Derivative Linked Securities (DLS). The payoff structure of the hybrid DLS consists with a standard 2-Star step-down type ELS and the range accrual product which depends on the number of days in the coupon period that the index stay within the pre-determined range. We assume that the 2-dimensional Geometric Brownian Motion (GBM) as the model of two equities and a no-arbitrage interest model (One-factor Hull and White interest rate model) as a model for the interest rate. In this study, we employ the Monte Carlo simulation method with the Compute Unified Device Architecture (CUDA) parallel computing as the General Purpose computing on Graphic Processing Unit (GPGPU) technology for fast and efficient numerical valuation of DLS. Comparing the Monte Carlo method with single CPU computation or MPI implementation, the result of Monte Carlo simulation with CUDA parallel computing produces higher performance.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"99 1\",\"pages\":\"277-293\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2016.20.277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2016.20.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种有效的衍生关联证券(DLS)定价的数值方法。混合DLS的收益结构由标准的2星降压型ELS和区间应计产品组成,区间应计产品取决于息票期内指数在预定区间内停留的天数。我们假设以二维几何布朗运动(GBM)作为两种股票的模型,以无套利利率模型(单因素Hull和White利率模型)作为利率模型。在本研究中,我们采用蒙特卡罗模拟方法与计算统一设备架构(CUDA)并行计算作为图形处理单元(GPGPU)通用计算技术,快速有效地对DLS进行数值评估。将蒙特卡罗方法与单CPU计算或MPI实现进行比较,采用CUDA并行计算的蒙特卡罗模拟结果具有更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PRICING METHOD OF HYBRID DLS WITH GPGPU
We develop an efficient numerical method for pricing the Derivative Linked Securities (DLS). The payoff structure of the hybrid DLS consists with a standard 2-Star step-down type ELS and the range accrual product which depends on the number of days in the coupon period that the index stay within the pre-determined range. We assume that the 2-dimensional Geometric Brownian Motion (GBM) as the model of two equities and a no-arbitrage interest model (One-factor Hull and White interest rate model) as a model for the interest rate. In this study, we employ the Monte Carlo simulation method with the Compute Unified Device Architecture (CUDA) parallel computing as the General Purpose computing on Graphic Processing Unit (GPGPU) technology for fast and efficient numerical valuation of DLS. Comparing the Monte Carlo method with single CPU computation or MPI implementation, the result of Monte Carlo simulation with CUDA parallel computing produces higher performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信