{"title":"太阳能辅助液态金属MHD发电:一项最新研究","authors":"S.C. Kaushik, S.S. Verma, A. Chandra","doi":"10.1016/0890-4332(95)90047-0","DOIUrl":null,"url":null,"abstract":"<div><p>The research and development of LMMHD energy conversion (EC) systems which started in the 1960s has already come a long way and is heading towards commercialization. Design and development of such systems has to deal with a number of questions relating to single- and two-phase flows of molten metals, including different patterns of two-phase flow, interphase, phenomena, heat transfer, performance of LMMHD components and compatibility of liquid metals with other fluids and with confinement materials. Liquid metal MHD (LMMHD) power conversion systems proposed many years ago are gaining increasing attention in their various proposed modes, consisting of single-phase or two-phase fluid flow for a wide range of heat sources, e.g. solar energy, waste heat, nuclear energy, etc.</p><p>Liquid metal MHD (LMMHD) power systems have been recently proposed for direct electrical energy conversion of low grade thermal sources of energy, like solar energy. Solar-powered LMMHD power generation systems are very attractive regarding efficiency and cost per unit of installed power. Theoretical and experimental investigations carried out in the various aspects of these systems are presented. A state of the art review of activities in the solar-powered LMMHD power systems field which have taken place so far is described here.</p></div>","PeriodicalId":100603,"journal":{"name":"Heat Recovery Systems and CHP","volume":"15 7","pages":"Pages 675-689"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0890-4332(95)90047-0","citationCount":"20","resultStr":"{\"title\":\"Solar-assisted liquid metal MHD power generation: A state of the art study\",\"authors\":\"S.C. Kaushik, S.S. Verma, A. Chandra\",\"doi\":\"10.1016/0890-4332(95)90047-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The research and development of LMMHD energy conversion (EC) systems which started in the 1960s has already come a long way and is heading towards commercialization. Design and development of such systems has to deal with a number of questions relating to single- and two-phase flows of molten metals, including different patterns of two-phase flow, interphase, phenomena, heat transfer, performance of LMMHD components and compatibility of liquid metals with other fluids and with confinement materials. Liquid metal MHD (LMMHD) power conversion systems proposed many years ago are gaining increasing attention in their various proposed modes, consisting of single-phase or two-phase fluid flow for a wide range of heat sources, e.g. solar energy, waste heat, nuclear energy, etc.</p><p>Liquid metal MHD (LMMHD) power systems have been recently proposed for direct electrical energy conversion of low grade thermal sources of energy, like solar energy. Solar-powered LMMHD power generation systems are very attractive regarding efficiency and cost per unit of installed power. Theoretical and experimental investigations carried out in the various aspects of these systems are presented. A state of the art review of activities in the solar-powered LMMHD power systems field which have taken place so far is described here.</p></div>\",\"PeriodicalId\":100603,\"journal\":{\"name\":\"Heat Recovery Systems and CHP\",\"volume\":\"15 7\",\"pages\":\"Pages 675-689\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0890-4332(95)90047-0\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Recovery Systems and CHP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0890433295900470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Recovery Systems and CHP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0890433295900470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solar-assisted liquid metal MHD power generation: A state of the art study
The research and development of LMMHD energy conversion (EC) systems which started in the 1960s has already come a long way and is heading towards commercialization. Design and development of such systems has to deal with a number of questions relating to single- and two-phase flows of molten metals, including different patterns of two-phase flow, interphase, phenomena, heat transfer, performance of LMMHD components and compatibility of liquid metals with other fluids and with confinement materials. Liquid metal MHD (LMMHD) power conversion systems proposed many years ago are gaining increasing attention in their various proposed modes, consisting of single-phase or two-phase fluid flow for a wide range of heat sources, e.g. solar energy, waste heat, nuclear energy, etc.
Liquid metal MHD (LMMHD) power systems have been recently proposed for direct electrical energy conversion of low grade thermal sources of energy, like solar energy. Solar-powered LMMHD power generation systems are very attractive regarding efficiency and cost per unit of installed power. Theoretical and experimental investigations carried out in the various aspects of these systems are presented. A state of the art review of activities in the solar-powered LMMHD power systems field which have taken place so far is described here.