{"title":"平衡晶体形状的分形结构。2分形维","authors":"S. Burkov","doi":"10.1051/JPHYSLET:019850046017080500","DOIUrl":null,"url":null,"abstract":"A crystal shape at T=0 is studied in the framework of the model of «bricks» attracting each other according to 1/rγ. It is shown that fractal dimensions of the Cantor sets of solitary edges and corners are γ/(γ−2) and 6/(γ−1), respectively Etude de la forme d'un cristal a T=0 dans un modele de briques s'attirant selon une loi en 1/rγ","PeriodicalId":14822,"journal":{"name":"Journal De Physique Lettres","volume":"29 1","pages":"805-810"},"PeriodicalIF":0.0000,"publicationDate":"1985-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fractal structure of the equilibrium crystal shape. II. Fractal dimensions\",\"authors\":\"S. Burkov\",\"doi\":\"10.1051/JPHYSLET:019850046017080500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A crystal shape at T=0 is studied in the framework of the model of «bricks» attracting each other according to 1/rγ. It is shown that fractal dimensions of the Cantor sets of solitary edges and corners are γ/(γ−2) and 6/(γ−1), respectively Etude de la forme d'un cristal a T=0 dans un modele de briques s'attirant selon une loi en 1/rγ\",\"PeriodicalId\":14822,\"journal\":{\"name\":\"Journal De Physique Lettres\",\"volume\":\"29 1\",\"pages\":\"805-810\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique Lettres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYSLET:019850046017080500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Lettres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSLET:019850046017080500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在根据1/rγ相互吸引的“砖块”模型框架下,研究了T=0时的晶体形状。结果表明,孤边和孤角的Cantor集的分形维数分别为γ/(γ−2)和6/(γ−1),分别为T=0时de la forme d'un晶体的分形维数和1/rγ时的分形维数
Fractal structure of the equilibrium crystal shape. II. Fractal dimensions
A crystal shape at T=0 is studied in the framework of the model of «bricks» attracting each other according to 1/rγ. It is shown that fractal dimensions of the Cantor sets of solitary edges and corners are γ/(γ−2) and 6/(γ−1), respectively Etude de la forme d'un cristal a T=0 dans un modele de briques s'attirant selon une loi en 1/rγ