{"title":"通过回收复杂合金来节约能源和材料","authors":"G. Horn","doi":"10.1179/030716984803274413","DOIUrl":null,"url":null,"abstract":"AbstractTechniques for the recycling of complex alloys containing nickel, chromium, cobalt, molybdenum, tungsten, and titanium, in both solid and particulate form, are discussed. Material processed in this way has been accepted as sufficiently pure for direct charging into vacuum melting furnaces. Typical energy and cost savings that can be achieved by recycling complex alloys are presented.","PeriodicalId":18409,"journal":{"name":"Metals technology","volume":"22 1","pages":"347-349"},"PeriodicalIF":0.0000,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conservation of energy and materials by recycling complex alloys\",\"authors\":\"G. Horn\",\"doi\":\"10.1179/030716984803274413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractTechniques for the recycling of complex alloys containing nickel, chromium, cobalt, molybdenum, tungsten, and titanium, in both solid and particulate form, are discussed. Material processed in this way has been accepted as sufficiently pure for direct charging into vacuum melting furnaces. Typical energy and cost savings that can be achieved by recycling complex alloys are presented.\",\"PeriodicalId\":18409,\"journal\":{\"name\":\"Metals technology\",\"volume\":\"22 1\",\"pages\":\"347-349\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/030716984803274413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/030716984803274413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conservation of energy and materials by recycling complex alloys
AbstractTechniques for the recycling of complex alloys containing nickel, chromium, cobalt, molybdenum, tungsten, and titanium, in both solid and particulate form, are discussed. Material processed in this way has been accepted as sufficiently pure for direct charging into vacuum melting furnaces. Typical energy and cost savings that can be achieved by recycling complex alloys are presented.