F. F. Razura-Carmona, A. Pérez-Larios, S. Sáyago-Ayerdi, M. Herrera-Martínez, J. Sánchez-Burgos
{"title":"生物功能化纳米材料:封装过程增强的替代方案","authors":"F. F. Razura-Carmona, A. Pérez-Larios, S. Sáyago-Ayerdi, M. Herrera-Martínez, J. Sánchez-Burgos","doi":"10.3390/polysaccharides3020025","DOIUrl":null,"url":null,"abstract":"In recent years, interest in the development of nanometric materials with specific characteristics has grown; however, there are few scientific contributions that associate encapsulation methodologies and matrices with the particle objective (metabolic directions, type of administration, biological impact, and biocompatibility). This review focuses on describing the benefits and disadvantages of different techniques for designing custom particles and alternatives for the biofunctionalization nanomaterials regarding the biological impact of a nanomaterial with potential use in foods known as nutraceuticals. The study of optical properties, physicochemical factors, and characteristics such as rheological can predict its stability in the application matrix; however, not only should the characterization of a nanocomposite with applications in food be considered, but also the biological impact that it may present.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biofunctionalized Nanomaterials: Alternative for Encapsulation Process Enhancement\",\"authors\":\"F. F. Razura-Carmona, A. Pérez-Larios, S. Sáyago-Ayerdi, M. Herrera-Martínez, J. Sánchez-Burgos\",\"doi\":\"10.3390/polysaccharides3020025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, interest in the development of nanometric materials with specific characteristics has grown; however, there are few scientific contributions that associate encapsulation methodologies and matrices with the particle objective (metabolic directions, type of administration, biological impact, and biocompatibility). This review focuses on describing the benefits and disadvantages of different techniques for designing custom particles and alternatives for the biofunctionalization nanomaterials regarding the biological impact of a nanomaterial with potential use in foods known as nutraceuticals. The study of optical properties, physicochemical factors, and characteristics such as rheological can predict its stability in the application matrix; however, not only should the characterization of a nanocomposite with applications in food be considered, but also the biological impact that it may present.\",\"PeriodicalId\":18775,\"journal\":{\"name\":\"Natural Polysaccharides in Drug Delivery and Biomedical Applications\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Polysaccharides in Drug Delivery and Biomedical Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/polysaccharides3020025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/polysaccharides3020025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biofunctionalized Nanomaterials: Alternative for Encapsulation Process Enhancement
In recent years, interest in the development of nanometric materials with specific characteristics has grown; however, there are few scientific contributions that associate encapsulation methodologies and matrices with the particle objective (metabolic directions, type of administration, biological impact, and biocompatibility). This review focuses on describing the benefits and disadvantages of different techniques for designing custom particles and alternatives for the biofunctionalization nanomaterials regarding the biological impact of a nanomaterial with potential use in foods known as nutraceuticals. The study of optical properties, physicochemical factors, and characteristics such as rheological can predict its stability in the application matrix; however, not only should the characterization of a nanocomposite with applications in food be considered, but also the biological impact that it may present.